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Abstract— We consider the problem of deploying a team of
robots in an unknown, obstructed environment to form a multi-
hop communication network. As a solution, we present a unified
framework, onLinE rObotic Network formAtion (LEONA), that
is general enough to permit optimizing the communication
network for different utility functions in non-convex environ-
ments. LEONA adopts the principle of “optimism in the face
of uncertainty” to allow the team of robots to form optimal
network configurations efficiently and rapidly without having
to map link qualities in the entire area. We demonstrate and
evaluate this framework on two specific scenarios concerning
the formation of a multi-hop communication path between
fixed end-points: one minimizing the total path cost, and
another maximizing the bottleneck communication rate. Our
simulation-based evaluation shows that the use of the optimism
principle can significantly reduce resources spent in exploring
and mapping the entire region prior to network optimization.
We also present a mathematical modeling of how the searched
area scales with various relevant parameters in each case.

I. INTRODUCTION

We consider the problem of deploying a team of robots
in an unknown, obstructed environment to form a multi-
hop communication network. In obstructed environments,
such as inside buildings or outdoors in forested areas, not
only is there a concern with moving efficiently through the
environment while avoiding obstacles and walls, the com-
munication channels are also cluttered and highly varying
due to signal attenuation (shadowing), as well as multi-path
scattering (fading).

With the exception of some recent work (e.g., [1]), most
research to date on robot network deployments has assumed
idealized communication models such as the unit disk model.
Further, the problem of network formation has typically been
treated assuming convex utility functions that can be opti-
mized through localized potentials [2] and greedy distributed
gradient descent algorithms [3]. While radio propagation
models such as the simple path loss model can yield such
convex optimization problems in unobstructed environments,
the presence of walls introduces non-convexities. We argue
in this work that a more tractable perspective is to consider
a graph theoretic formulation in which vertices correspond
to the set of all possible (discretized) locations for the
robots in the given environment, and there are labels on the
edges between the vertices that indicate the RF path loss
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(or a monotonic function thereof) between the corresponding
positions. The network formation problem becomes one of
finding subgraphs of this graph (in this work we focus on
path formation, but the approach could be generalized further
to trees or other graph structures) that satisfy the constraint
that the number of nodes in the selected subgraph must be
equal to or less than the number of available robots, and
maximize a desired utility function. Such a problem could
then be solved using a suitable centralized or decentralized
graph algorithm (e.g., Bellman-Ford algorithm to compute
the minimum cost path) to yield the optimal configuration
of the robotic network.

While general enough to handle many non-convex network
optimization problems such as minimum cost path formation
in environments with arbitrary link qualities (which is not
possible using a purely distributed potential-based approach
in obstructed environments), the implementation of this
graph-theoretic approach in practice faces one significant
hurdle: it requires prior mapping of the area to determine
the link qualities for every pair of locations, which could
be prohibitively time-consuming. We address this challenge
with an innovative online, iterative, approach that is based
on the principle of “Optimism in the Face of Uncertainty”
inspired by similar ideas in the domain of online learning
and multi-armed bandits [4].

Contributions. We first propose a unified framework,
called LEONA (for onLinE rObotic Network formAtion),
that is general enough to allow optimizations for different
utility functions in non-convex environments. The crux of
the approach is the following. At each stage, an optimistic
prediction of the graph edge weights (link qualities) is
maintained, i.e., it is ensured that the predicted link quality
is no worse than the true link quality. And at that iteration,
the robots move through the environment to the network
configuration computed to be optimal for that predicted
graph. As they move through the environment, the robots
collaborate to take additional measurements of the link
qualities. These measurements, and potentially, additional
inferences derived from these measurements1, are used to
update the predicted graph to a new set of values, that are
still ensured to be optimistic (though now a bit “closer” to the
true graph because of the updates). The iterations continue
until the robots are at a configuration whose measured utility

1For example, it may be reasonable to assume that if a particular pair of
locations has a certain path loss indicative of significant attenuation due to
a wall, then links corresponding to all locations that fall on or even near the
same line as those locations must experience at least that much loss due to
attenuation as well.



is as good as the best possible configuration in the current
predicted graph, which can then be shown to be provably
optimal because of its optimistic bias.

Second, we demonstrate and evaluate how this general
framework, i.e., LEONA, works in unknown environments
for two specific scenarios concerning the formation of a
multi-hop robotic relay path between two fixed end-points
in an obstructed environment, that differ in the path utility
functions: in one we seek to minimize the total path cost, and
in the other, we seek to maximize the bottleneck rate (i.e.,
the end-to-end data rate). Our simulation-based evaluation
shows that the use of the optimism principle can significantly
reduce the time spent in exploring and mapping the entire
region a priori before the optimal network configuration is
constructed. We also present a mathematical modeling of
how the searched area scales with various relevant parameters
in each case.

The rest of the paper is organized as follows: in section II,
we present related work; in section III, we define the general
utility maximization problem involved in robotic network
formation in the environment; in section IV we present the
general LEONA framework, while in the succeeding sec-
tions V and VI we present two case studies for specific utility
functions pertaining to minimization of expected number
of transmissions per successfully delivered packet (ETX)
and maximization of bottleneck-rate respectively, including
both theoretical analysis and simulation-based evaluations;
Finally, we present a summary and discuss future work
directions in section VII.

II. RELATED WORK

Networked robots have been well investigated in recent
years, especially in the field of flocking [5], formation
control [6] and swarming [7]. The key idea is to allow a
team of robots to cooperate and coordinate in a networked
autonomous system to perform a specific task. Therefore,
communication among robots plays a significant role in
enabling cooperation. While the disk communication model
has been used in many of these previous works to maintain
connectivity among robots, such a simple model does not fit
in a realistic environment, and thus degrades the performance
of previous work when applied in reality.

Recently, there has been growing body of work consider-
ing more realistic communication performance in networked
robots, referred to as Communication-Aware Robotics. Re-
searchers in [8] have studied integrity problems where con-
trollers of robots are designed while considering maintaining
a desired transmission rate at the same time. A robotic
router formulation problem has been studied in [1], where an
optimal configuration of robots is formulated to maintain a
maximized successful reception rate in realistic communica-
tion environments. ETX has been taken into consideration
in [9], where researchers design a hybrid architecture to
allow robots optimally configured so that each flow has a
minimized ETX in a multiple flow network. But because of
the convexity of utility functions each of these papers uses,
they can apply potential functions or greedy gradient descent

algorithms, which are implicitly based on the assumption
there is only one extreme solution. This assumption no
longer holds when the existence of noise sources or obstacles
introduces non-convexities.

Controlling a team of robots in a network becomes more
challenging when there are obstacles in the environment.
Most work designs the controllers of robots under the as-
sumption that the obstructed environment is known a priori.
This would allow researchers to explicitly add obstacle
avoidance by utilizing either linear constraints [10] or artifi-
cial potentials [11]. Moreover, when communication-oriented
performance is taken into consideration, not only obstacles
can block robots’ movements, they can also cause signal
attenuation. Few works [12], [14] consider wall attenuation
when studying robots’ coordination. More difficulties arise
when the environment is unknown, which further requires
robots to take measurements and explore the environment.

In [13], a measurement-based mapping is computed in
each spatial direction between a robot’s current position and
the received signal strength regardless of the robots’ envi-
ronment and this is used to obtain a quadratic optimization
yielding the best locations for a set of robotic access points
to serve a set of (possibly mobile) clients. However that
work does not consider the problem of forming a general
utility-optimized multi-hop communication network among
the robotic nodes. Another problem similar to the one we
address is studied in [14] by proposing an algorithm for
maintaining end-to-end network connectivity for a team of
robots. They jointly find robot configurations with wireless
network routing. However, in order to build the configuration
space, the environment has to be known a priori .

To our knowledge, this is the first work to present a mech-
anism for rapid optimal multi-hop network configuration by
a team of robots in an unknown realistic RF environment
with obstructions, where the problem is non-convex and
not amenable to solution using standard potential-based
approaches.

III. PROBLEM FORMULATION

We consider a team of m � 3 robots performing a
task in an unknown walled environment. Robot 1 works as
a source that transmits information to a destination robot
m. Our goal is to find an optimal configuration of the
remaining relay robots so that they can form a multi-hop
communication path from the source to the destination with
optimized performance.

A. Link Quality Metric

The walled environment is represented as a 2-D L⇥L grid
and each pixel in the grid can either be a possible location
for a robot or is occupied by a wall. Among all the m
robots, robot 1 and robot m work as a source-destination
pair, which are static and their positions are known a priori.
The rest of the robots can move around in the space to
enable and improve the communication between the source
and destination. When a robot i communicates with robot
j, the strength of signal decreases as it travels through air.



Moreover, if there are walls between the communication
pair, additional signal attenuation can occur. Taking signal
attenuation caused by travelling distance and walls into
consideration, the received signal (in dB) at the receiver j
from transmitter i can be expressed as ([15]):

Pr
i,j

= Pr0 � 10⌘ log(
d
i,j

d0
)� n

i,j

W (1)

where d
i,j

is the distance between robots i and j; n
i,j

is the
number of walls between them; Pr0 is the received power
strength at a reference point with a small distance d0 from
the transmitter; ⌘ is the path loss parameter indicating the
rate at which the attenuation increases with distance; W is
the attenuation effect of a single wall.

Let the noise power spectral density be N0 and spectrum
bandwidth be B, then the Signal-to-Noise Ratio (SNR) at
the receiver j is defined to be:

�
i,j

=

Pr
i,j

N0B
(2)

We define the link quality metric l
i,j

of the communication
link (i, j) as a strictly increasing function of the SNR at
receiver j corresponding to transmitter i:

l
i,j

= f(�
i,j

) (3)

B. Mobility, Sensing and Environment Assumptions

Time is divided into discrete time steps of unit duration.
At each time step, a mobile robot can move to one of its
four neighbor positions (up, down, left, right) or stay at its
current position. We assume each robot has the ability to
sense and detect walls within one moving step range, which
helps a robot avoid colliding with walls. The moving decision
is made by each robot itself. We assume the unknown
environment is connected, i.e., given any two pixels in the
grid that are not occupied by walls, there always exists a
path between them. This assumption ensures all the available
positions in the environment could be reached by robots.

C. Objective Function

Our goal is to design an optimal configuration of mobile
relay robots such that they finally form a communication
path2 connecting the source and destination with a maxi-
mized utility U , which is a monotonic function of all link
qualities:

max

(x1
,...,x

m)2P
U(l1,2, . . . , lm�1,m) (4)

where xk (where 1  k  m) is the position of the kth robot
and P is the set of all possible configurations.

2Configuration, communication path and solution are used interchange-
ably in the rest of the paper.

IV. ONLINE ROBOTIC NETOWRK FORMATION
(LEONA)

There are three challenges inherent in the problem we
address: 1) The environment is unknown so that robots
need to dynamically combine exploration with configuration
optimization; 2) The signal attenuation caused by walls
results in a non-metric space so that prior metric-based al-
gorithms cannot be applied to our problem; 3) The objective
function in general is not convex so that potentials and
convex optimization methods do not work. Therefore, one
natural question to ask is: Given an unknown environment,
is it possible to find an optimal configuration without fully
exploring the whole space? The answer is yes, and in the
following, we propose a graph-based online approach, which
is guaranteed to find the optimal solution with only partial
exploration of the environment.

A high-level structure of the proposed unified framework
LEONA is presented in Algorithm 1 with related steps
detailed in Algorithm 2-5. To begin with, each mobile robot
maintains a communication graph, which is represented as a
complete directed graph G(V, E). The vertices in the graph
are all pixels in the grid. And a directed edge (i, j) 2 E
represents a communication link with transmitter at pixel i
and receiver at pixel j. The graph is complete in the sense
that every two vertices are connected by a pair of directed
edges. The weight of an edge (i, j) is set as an optimistic
prediction of the link quality l

i,j

. We assume robots can
share environment information with each other through the
communication path between the source and destination, thus
all of them maintain the same knowledge of the environment.

The environment information includes SNR measurements
and detected wall positions. Each robot constructs its com-
munication graph G(V, E) based on its current information.
For each (i, j) 2 E , if its link quality has been measured,
the edge weight is set as measured. Otherwise, the edge
weight is predicted according to eqns. (1)-(3) based on
explored walls’ information. Thus, if all walls along link
(i, j) are fully explored, the predicted edge weight is the
same as the actual link quality; if there is still some wall
information missing, the predicted edge weight is optimistic
or overestimated. Based on the current communication graph
G with optimistic prediction, robots apply FindPath(G)

to find the best possible communication path. After moving
to form the best possible communication path, robots take
measurements to find actual link qualities along the path,
and update their communication graph G based on new
information. They run FindPath(G) again to find the best
possible communication path. If the current communication
path’s measured utility is as good as the best possible path,
the algorithm terminates. Otherwise, robots move to form
the new best-possible communication path, and repeat above
procedures until the termination condition is met.

Theorem 1: The robotic network configuration obtained
from LEONA is optimal.

Proof: In LEONA, by construction, when updating the
communication graph G at each step based on measurements,



the predicted weight of each edge is always no worse3 than
its actual weight. Thus the communication graph is always
optimistic. When LEONA terminates, the actual utility of
final configuration is at least as good as the best possible
estimated configuration, which indicates the actual utility
of the final configuration is as least as good as the actual
utilities of all other possible configurations. Therefore, the
final configuration is optimal.

Algorithm 1 Online Robotic Network Formation (LEONA)
1: . Initialization
2: Robots start from current initial positions p⇤ =

(x1, . . . , xm

) and initialize utility of the current path p⇤

as U⇤
= 0. Initialize the measured SNR set and detected

walls’ positions set as S = � and W = � respectively
3: . Update communication graph
4: G UpdateGraph(G(V, E),S,W)

5: . Find best possible path and its utility
6: (p, U) FindPath(G)

7: while U⇤ < U do
8: . Robots move to form the best possible path
9: (p⇤,W) Move(p⇤, p)4

10: . Measure SNR of each link on current path p⇤

11: S  MeasureSNR(p⇤)
12: . Set the utility of current path p⇤

13: U⇤  SetUtility(p⇤,S)
14: . Probe walls on the current path p⇤

15: W  ProbeWall(p⇤)
16: . Update communication graph
17: G UpdateGraph(G(V, E),S,W)

18: . Find best possible path and its utility
19: (p, U) FindPath(G)

20: end while

Remark 1: LEONA provides a unified framework to find-
ing an optimal communication path that combines both
environment exploration and configuration optimization. And
it is general enough to permit optimizing for different utility
functions in non-convex environments. In the following,
we provide two specific case studies in which we apply
LEONA with FindPath(G) instantiated to find optimal
configurations with respect to two different metrics.

3The predicted edge weight is the same as the actual weight if the link
quality has been measured or all related wall information has been detected;
overestimated if there is still some related walls’ information missing.

4This Move(p⇤, p) algorithm follows the same idea of Robotic Routing
Protocol [16], except for allowing a robot to choose using either Righthand
Traversal Rule or Lefthand Traversal Rule in the Recovery Mode: A robot
first greedily moves to its goal position in Forwarding Mode. When meeting
a wall, it switches to move in Recovery Mode by following either Righthand
Traversal Rule if its goal position is on the right side of its current position
or Move in Recovery Mode by following Lefthand Traversal Rule if its
goal position is on the left side of its current position to avoid walls. When
arriving in a position that is closer to its goal position than the start of
Recovery Mode, the robot switches back to Forwarding Mode. A robot can
also record positions of walls ⌦r sensed during moving and update W as
W [ ⌦r .

5An element in S is denoted as (i, j, �i,j), where i is the transmitter’s
position, j is the receiver’s position and �i,j is the corresponding SNR of
link (i, j). An element is W is a detected wall position.

Algorithm 2 UpdateGraph(G(V, E), S ,W)

1: for each directed edge (i, j) 2 E do
2: if (i, j, �

i,j

) 2 S5 then
3: Update the egde weight as l

i,j

= f(�
i,j

)

4: else
5: Predict n

i,j

according to W
6: Calculate �

i,j

according to (1) and (2)

7: Update the edge weight as l
i,j

= f(�
i,j

)

8: end if
9: end for

10: return G

Algorithm 3 MeasureSNR(p⇤)

1: for each reciever robot k on p⇤, where k 2 {2, . . . ,m}
do

2: Measure its SNR with transmitter robot k�1: �
k�1,k

3: S  S [ (xk�1, xk, �
k�1,k)

4: end for
5: return S

Algorithm 4 SetUtility(p⇤,S)

1: for each communication link (xk�1,xk) along path p⇤,
where k 2 {2, . . . ,m} do

2: Find its corresponding �
k�1,k from S

3: Update edge weight as l
k�1,k = f(�

k�1,k)

4: end for
5: U⇤  U

(x1
,...,x

m)=p

⇤
(l1,2, . . . , lm�1,m)

6: return U⇤

Algorithm 5 ProbeWall(p⇤)

1: for each robot k on p⇤, where k 2 {1, . . . ,m} do
2: Send a probing signal to neighbor robots respectively
3: Detect the position of closest wall w

d

that reflects
probing signal back to robot k: W  W [ {w

d

}
4: end for
5: return W

V. CASE STUDY I: FINDING MINIMIZED ETX PATH

One commonly used metric to measure the link quality is
the expected number of transmissions per successfully deliv-
ered packet (ETX), which can be modeled as the inverse of
the successful packet transmission rate �

i,j

over a link (i, j).
Once specifics of a communication system (modulation and
coding scheme, etc.) are fixed, �

i,j

can typically be expressed
in terms of either a Q function or an exponential function
of �

i,j

([17]). We use Q function as an example here, and
the corresponding successful packet transmission rate of link
(i, j) is

�
i,j

= (1�Q(

p
c�

i,j

))

h (5)

where h is the length of a packet and c is some positive
constant.



And the corresponding link quality, defined as �ETX , is

l
i,j

=

�1
(1�Q(

p
c�

i,j

))

h

(6)

The ETX of a path is the summation of all link ETXs, and
our goal is to let robots form a communication path between
the source and destination which has the minimized ETX or,
equivalently, maximized utility:

max
(x1

,...,x

m)2P

mX

k=2

l
k�1,k (7)

The optimal configuration of robots can be found by apply-
ing LEONA with the FindPath(G) implemented as running
a Shortest Path Algorithm (e.g., Bellman-Ford algorithm)
with a constraint that the total number of hops along a path
is at most m � 1 if the weight of each edge is set to the
associated ETX on the current graph G.

A. Analysis of the Sufficient Searched Area

As the optimality of the LEONA is guaranteed, one
additional question to ask is: How much space needs to be
explored in order to find an optimal configuration?

Assume the distance and the number of walls between the
source robot 1 and destination robot m are denoted as d and
n respectively, then the following theorem provides an upper
bound on the sufficient searched area.

Theorem 2: When applying LEONA, the size of the
sufficient searched area A that guarantees robots to find the
optimal configuration with minimized ETX is

A = O(10

n

W
5⌘ d2) (8)

Further, if the distribution of n walls along the straight line
connecting the source and destination allows each commu-
nication pair to have same number of walls when robots are
evenly spaced along the straight line, the sufficient searched
area can reduce to O(10

d n
m�1 e

W
5⌘ d2).

Proof: See [19].
We omit the detailed proof due to space constraints. But

briefly, it takes into account the following considerations.
After the first run of FindPath(G) in LEONA with the
communication graph G constructed under the assumption
the environment is wall-free, robots move to be evenly
spaced along the straight line connecting the source and
destination6. And if this is not the optimal configuration,
robots’ exploration starts from here and expands outwards.
If the searched area is so large that any communication path
(even if without wall attenuation) outside the searched area
has a worse ETX than that in the evenly-spaced-along-the-
straight-line case, there is no need to search further and the
optimal communication path is guaranteed to be found within
the searched area. This results in a bound on the searched
area.

6According to [9], it may be the case that not all relay robots are needed
to form the path. However, the benchmark case, i.e., all relay robots are
evenly spaced, can give no better ETX and thus, the sufficient searched
area is still large enough to find the optimal configuration.

Remark 2: 1) The sufficient searched area scales polyno-
mially with the distance between the source and destination
and exponentially with the number of walls along the straight
line connecting them. But any other wall that is not along
the straight line has no effect on the size of the sufficient
searched area; 2) When the distance and the number of walls
along the straight line are fixed, the distribution of walls
plays a crucial role in the size of searched area. The searched
area becomes large when walls gather close to each other;
And it becomes small when walls separately locate along
the straight line; 3) Given an unknown environment, one
possible way to reduce the size of searched area is to send
more robots in the space which can provide a better chance
to have walls separated among communication pairs, which
suffers less signal attenuation and thus have a better ETX.

B. Simulation Results

We present numerical simulation results for a network
containing 11 robots in a 50 ⇥ 50 environment. The robot
1 and robot 11, as the source and destination, are statically
located at (3, 3) and (48, 48) respectively. The rest are mobile
robots moving around with the purpose of formulating a
communication path between the source and destination with
minimized ETX. The initial locations of mobile robots are
set to be as equally spaced as possible along the straight line
connecting the source and destination7. We use P0 = �20,
d0 = 1, ⌘ = 3.3, W = 20, N0 = 10

�14, and B = 2 ⇥ 10

6.
When taking wall attenuation into account, the packet recep-
tion rate of a link (i, j) is well approximated by a sigmoidal
function of distance as �

i,j

= 1� 1

1+e

�↵(di,j10

ni,jW

10⌘ ��)

([9]),

which considers different kinds of specifics of a communi-
cation system. We use this model in our simulations and set
↵ = 0.2 and � = 8.

We fix the shape and size of walls, and use the number of
walls as an indicator of the complexity of an unknown envi-
ronment. We randomly add walls in the space and the number
of walls is varied as shown in Figure 1. We compare LEONA
with an Offline Algorithm, which is guaranteed to find the
optimal configuration. In the Offline Algorithm, robots first
fully explore the environment to find the prior mapping of
the area and build the corresponding communication graph
G. Then they apply Shortest Path Algorithm to find the
optimal configuration. In addition to presenting the ETX of
the optimal path, we also present the total number of moving
steps robots take before finding the optimal path, which
serves as an indicator of searched area size. As can be seen in
the Figure 1, LEONA can always find optimal configurations;
And as the number of walls (or the complexity of the
environment) increases, the number of steps taken during
exploration increases under both schemes, but LEONA takes
far less.

In Figure 2, we present the optimal robot configurations
obtained in an environment with 12 walls with single wall
attenuation effect W = 20 in (a) and W = 3.3 in (b). In

7Mobile robots can initially start from any locations in the environment.
And they can find the optimal configurations when LEONA terminates.



Figure 2 (a), wall attenuation is high so that the optimal
configuration is a path free from walls, along which robots
are roughly evenly spaced. In Figure 2 (b) the optimal path
still has walls affecting it, since the wall attenuation is small
which does not cause robots to move away from the straight
line. However, robots are no longer evenly spaced and those
communication robot pairs suffering from wall attenuation
compensate by having shorter link distance. As can be seen
from both cases, robots only explore part of the environment
before finding the optimal configuration. One thing needs to
be noted is that due to the fact that the utility in the ETX
case is a unimodal (increasing-then-decreasing) function of
the number of robots, not all available robots are always
required in the optimal path configuration; though, generally,
more robots are needed as the number of walls increases.
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Fig. 1: ETX (left) and moving steps (right)

(a) Configuration with strong wall attenuation (W=20)

(b) Configuration with weak wall attenuation (W =3.3)

Fig. 2: Illustration of robot configurations

VI. CASE STUDY II: FINDING MAXIMIZED
TRANSMISSION-RATE PATH

Another important metric to measure link quality is trans-
mission rate. From the classic Shannon-Hartley Formula, the
transmission rate of a link (i, j) is a function of the SNR at
receiver j corresponding to transmitter i:

l
i,j

= Blog(1 + �
i,j

) (9)

The transmission rate of a communication path formed by
multiple links is determined by the transmission rate of its
bottleneck link. Thus, to have a maximized transmission rate
between the source and destination, the m�2 mobile robots
need to form a transmission path which has a maximized
bottleneck rate. Therefore, the objective function in (4) is
instantiated as

max
(x1

,...,x

m)2P
min(l1,2, . . . , lm�1,m) (10)

The optimal configuration of robots in this case can be
found by LEONA with the FindPath(G) implemented as
Widest Path Algorithm [18] with a constraint that the total
number of hops along a path is at most m� 1.

A. Analysis of the Sufficient searched Area
In the case of finding maximized transmission-rate path,

we have the same sufficient searched area result:
Theorem 3: When applying LEONA, the size of the

sufficient searched area A that guarantees robots to find the
optimal configuration with maximized transmission rate is

A = O(10

n

W
5⌘ d2) (11)

Further, if the distribution of n walls along the straight line
connecting the source and destination allows each commu-
nication pair to have same number of walls when robots are
evenly spaced along the straight line, the sufficient searched
area can reduce to O(10

d n
m�1 e

W
5⌘ d2).

Proof: See [19].

B. Simulation Results
We conduct simulations in the same network scenario as

Case Study I. The Offline Algorithm is the same as Case
Study I with only one difference that robots apply Widest
Path Algorithm to find the optimal configuration. As seen
in Figure 3, similar results are found: LEONA can always
find the optimal configuration and takes less amount of
movements and explorations than the offline scheme. We
also present robot configurations in an environment with 12

walls with single wall attenuation W = 20 in Figure 4
(a) and W = 3.3 in Figure 4 (b). In the strong wall
attenuation case, robots form a wall-free optimal path on
which they are roughly evenly spaced. However, in the weak
wall attenuation case, the optimal path still has walls along it
where communication pairs suffering from wall attenuation
compensate by having shorter link distance. One difference
from Case Study I is that since the maximized transmission
rate of a path increases as the number of robots increases
when environmental configuration is fixed, thus, all 9 relay
robots are required in the optimal configuration.



VII. SUMMARY AND FUTURE WORK

We have shown in this work how the adoption of an
iterative online search combined with a graph based approach
can allow for the formation of optimal robotic network
configurations in unknown environments with obstructions.
We have illustrated our general LEONA framework with
two specific case studies. It is straightforward to incorporate
many other utility functions and constraints into this frame-
work. In this work, we assumed a simple path loss model
with wall attenuation in order to make and update predictions
— the framework is flexible enough to accommodate other
models / approaches to prediction. The only hard requirement
is that at each step an optimistic estimate be generated.
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Fig. 3: Transmission rate (left) and moving steps (right)

(a) Configuration with strong wall attenuation (W =20)

(b) Configuration with weak wall attenuation (W =3.3)

Fig. 4: Illustration of robot configurations

For many path and network optimization problems such

as the ones considered in this study, it is possible to
obtain a global solution in polynomial time. So long as
the network of robots moves in such a way as to ensure
connectivity is maintained at all times, they can exchange
their measurements in an online fashion, and the predicted
graph can be updated in a consistent manner by all robots
in the network allowing them to each compute the optimal
predicted location for themselves in a parallel fashion. It
may be possible to adopt and interleave more sophisticated
message passing mechanisms with the iterations of the online
algorithm to further improve the robustness and efficiency
of the system. Real-world factors such as multi-path fading,
heterogeneous wall attenuation, communication failures and
time-varying environments also need to be incorporated. We
leave the design of such enhancements as open problems to
be considered in future work.
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