
Downwash-Aware Trajectory Planning for Quadrotor Swarms

James A. Preiss, Wolfgang Hönig, Nora Ayanian, and Gaurav S. Sukhatme

Abstract— We describe a trajectory planning pipeline for
large quadrotor teams in obstacle-rich environments. We con-
struct a sparse roadmap in the environment and use a bounded-
suboptimal conflict-based graph search to generate a discrete
plan. We then refine this plan into into smooth trajectories
using a spatial partition and Bézier curve basis. We model
downwash directly, allowing safe flight in dense formations.
We show simulation results with up to 200 robots and a
real-robot experiment with 32 quadrotor. To our knowledge,
our approach is the first solution which can compute safe
and smooth trajectories for hundreds of quadrotor in dense
environments with obstacles in a few minutes.

I. INTRODUCTION

Trajectory planning is a fundamental problem in multi-
robot systems. Consider a team of N robots in an en-
vironment defined by convex polytope W and containing
convex obstacles O1 . . .ONobs

, resulting in the obstacle-free
configuration space F ⊂ R3 for a single robot with known
shape. We are given a start position for each robot si ∈ F
and either a set of goal positions G ⊂ F , |G| = N (unlabeled
case) or a goal position for each robot gi ∈ G (labeled case.)
We seek the following:

• The total time duration T ∈ R>0 until the last robot
reaches its goal

• In the unlabeled case an assignment of each robot to
a goal position gφ(i) ∈ G, where φ is a permutation of
1, . . . , N

• For each robot ri, a trajectory f i : [0, T] → F where
f i(0) = si, f i(T) = gφ(i), f i must be continuous up
to the C th derivative (where C is user-specified), and
collisions are avoided at all times for all robot pairs.

In particular, we are interested in solving this problem for
large teams of quadrotors in tight formations. To account
for the downwash force generated by one quadrotor’s air
stream on another, we treat each robot as an axis-aligned
ellipsoid of radii 0 < rx = ry � rz . Due to the differential
flatness of quadrotor dynamics, we focus on planning smooth
trajectories in 3D Euclidean space and ignore the yaw angle.

A large body of work has addressed this problem. Graph
search approaches (e.g. [1]) are adept at dealing with maze-
like environments and scenarios with high congestion. How-
ever, directly executing a graph plan results in a piecewise
linear path, requiring the robot to fully stop at each graph ver-
tex to maintain dynamic feasibility. Continuous approaches
[2] address this issue, but they are often tightly coupled,

All authors are with the Department of Computer Science, University of
Southern California, Los Angeles, CA, USA.

Email: {japreiss, whoenig, ayanian, gaurav}@usc.edu
This work was partially supported by the ONR grants N00014-16-1-2907

and N00014-14-1-0734, and the ARL grant W911NF-14-D-0005.

Fig. 1. Long exposure of 32 Crazyflie nano-quadrotors flying through an
obstacle-rich environment.

solving one large optimization problem in which the decision
variables define all robots’ trajectories. These approaches are
typically demonstrated only on smaller teams.

Our approach decomposes the formation change problem
into three steps. Roadmap generation generates a roadmap
using the following inputs: model of the environment, colli-
sion model for robot-obstacle interaction, collision model for
robot-robot interaction, and start and goal locations. Discrete
planning solves the goal assignment problem (generating φ)
and computes a timed sequence of waypoints for each robot
on the generated roadmap. Continuous refinement uses the
discrete plan as a starting point to compute a set of smooth
trajectories, similar to [3] but adding support for three-
dimensional ellipsoidal robots, environmental obstacles, and
an anytime refinement stage to further improve the plan after
generating an initial set of smooth trajectories.

II. ROADMAP GENERATION

A roadmap is an undirected connected graph of the
environment GE = (VE , EE), where each vertex v ∈ VE
corresponds to a location in F and each edge (u, v) ∈ EE
denotes that there is a linear path in F connecting u and
v. We can generate a roadmap using standard methods such
as PRM* or SPARS using the model of the environment
and the robot-obstacle collision model (a sphere in the case
of quadrotors). Due to the increased difficulty of the graph
planning problem compared to the single-robot case, it is
important to generate a sparse roadmap.

Generic roadmaps might not be suitable for multi-robot
planning algorithms, because they do not include constraints
between robots. Thus, we annotate the roadmap with general-
ized edge and vertex conflicts using the ellipsoid robot-robot
collision model. Those conflicts constrain the proximity to
other robots.

III. DISCRETE PLANNING STAGE

We extend the Multi-Agent Path-Finding (MAPF) problem
to support generalized edge and vertex conflicts. We are
given an undirected connected graph of the environment At
each discrete timestep, a robot can either wait at its current
vertex or traverse an edge. We seek paths pi such that the
following properties hold:
P1: Each robot starts at its start vertex.
P2: Each robot ends at a unique goal location.
P3: At each timestep, each robot either stays at its current

position or moves along an edge.
P4: There are no robots occupying the same location at the

same time (vertex collision).
P5: There are no robots traversing the same edge in opposite

directions (edge collision).
P6: Robots obey downwash constraints when stationary

(generalized vertex collision).
P7: Robots obey downwash constraints while traversing an

edge (generalized edge collision).
We can find an optimal solution for the unlabeled problem

using an ILP-based formulation and we can compute a
bounded suboptimal solution to the labeled problem by
extending ECBS [1]. ECBS can also be used for unlabeled
problems by computing a goal assignment using a linear
bottleneck assignment formulation.

IV. CONTINUOUS REFINEMENT STAGE

In the continuous refinement stage, we convert the way-
point sequences pi from the discrete planner into smooth
trajectories f i. We begin by finding partitioning the free
space F into safe corridors for each robot. The safe
corridor for robot ri is a sequence of convex polyhedra
Pik, k ∈ {1 . . .K}, such that, if each ri travels within Pik
during time interval [tk−1, tk], both robot-robot and robot-
obstacle collision avoidance are guaranteed. These polyhedra
are computed by finding ellipsoid-weighted separating hyper-
planes for each robot-robot interaction and for all obstacles
within a local neighborhood around each robot’s trajectory.

We then plan a smooth trajectory f i(t) for each robot,
contained within the robot’s safe corridor. We represent these
trajectories as piecewise Bézier curves with one piece per
time interval [tk, tk+1]. In the Bézier basis, constraining the
trajectory to lie inside the safe corridor can be expressed as
linear inequality constraints on the curve’s control points.

We select an optimal Bézier trajectory by minimizing a
weighted combination of the integrated squared derivatives:

cost(f i) =
C∑
c=1

γc

∫ T

0

∥∥∥∥ dcdtc f i(t)
∥∥∥∥2
2

dt

where the γc ≥ 0 are user-chosen weights. This cost is a
quadratic function of the control points, forming a quadratic
program along with the linear corridor constraints. We solve
one instance of this quadratic program per robot in parallel.

We further improve these trajectories with an iterative
refinement stage. We use the smooth trajectories to define
a new spatial decomposition based on sampled points along

Fig. 2. Trajectory plans for “USC” formation change problem, executed
on real robots. See section V for details.

Fig. 3. Illustration of iterative refinement. Fine lines represent the discrete
plans pi; heavy curves represent the continuous trajectories f i (left: after
1 iteration; right: after 6 iterations) for a subset of four robots.

each polynomial piece, producing new safe corridors that
are roughly “centered” on the smooth trajectories rather than
on the discrete plan. We then repeat the same optimization
method to solve for a new set of smooth trajectories. Intu-
itively, iterative refinement provides a chance for the smooth
trajectories to move further towards a local optimum that was
not feasible under the original spatial decomposition.

V. EXPERIMENTS
We evaluate our method on real robots with 32 Crazyflie

nano-quadrotors. The robots begin in concentric circles in
the x− y plane, fly through a cluttered set of obstacles, and
form the letters “USC” in the air. The obstacle map was
produced with a structured-light depth camera and octree-
based occupancy grid mapping with resolution of 0.1m.
The discrete roadmap produced by the SPARS algorithm
contained approximately 850 vertices and 3200 edges.

The final plan is illustrated in Fig. 2. Iterative refinement
was able to able to significantly improve the trajectory
smoothness, as illustrated in Fig. 3. This was also confirmed
in prior work using grid-based discrete planning [4], where
peak acceleration was reduced from 5.2 to 1.6 m/s2 and peak
angular velocity from 2.2 to 0.38 rad/s.

REFERENCES

[1] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Symposium on Combinatorial Search (SOCS), 2014.

[2] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012.

[3] S. Tang and V. Kumar, “Safe and complete trajectory generation for
robot teams with higher-order dynamics,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2016.

[4] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme, “Downwash-
aware trajectory planning for large quadcopter teams,” arXiv preprint
arXiv:1704.04852, 2017.

	INTRODUCTION
	ROADMAP GENERATION
	DISCRETE PLANNING STAGE
	CONTINUOUS REFINEMENT STAGE
	EXPERIMENTS
	References

