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Abstract

The Multi-Agent Pickup and Delivery (MAPD) problem
models applications where a large number of agents attend
to a stream of incoming pickup-and-delivery tasks. Token
Passing (TP) is a recent MAPD algorithm that is efficient
and effective. We make TP even more efficient and effective
by using a novel combinatorial search algorithm, called Safe
Interval Path Planning with Reservation Table (SIPPwRT),
for single-agent path planning. SIPPwRT uses an advanced
data structure that allows for fast updates and lookups of the
current paths of all agents in an online setting. The resulting
MAPD algorithm TP-SIPPwRT takes kinematic constraints
of real robots into account directly during planning, com-
putes continuous agent movements with given velocities that
work on non-holonomic robots rather than discrete agent
movements with uniform velocity, and is complete for well-
formed MAPD instances. We demonstrate its benefits for
automated warehouses using both an agent simulator and a
standard robot simulator. For example, we demonstrate that
it can compute paths for hundreds of agents and thousands
of tasks in seconds and is more efficient and effective than
existing MAPD algorithms that use a post-processing step to
adapt their paths to continuous agent movements with given
velocities.

Introduction
In the Multi-Agent Pickup and Delivery (MAPD) problem
(Ma et al. 2017),m agents a1 . . . am attend to a stream of in-
coming pickup-and-delivery tasks in a given 2-dimensional
4-neighbor grid with blocked and unblocked cells of size
L×L each. Agents have to avoid collisions with each other.
A task τj is characterized by a pickup cell sj and a delivery
cell gj . The task is inserted into the system at an unknown
time. The task set T contains the unassigned tasks in the
system. An agent not executing a task is called a free agent.
It can be assigned any one task τj ∈ T at a time and then has
to move from its current cell via cell sj to cell gj , implying
that it has to move an object from cell sj to cell gj and can
carry at most one object at a time. Once it arrives at cell sj ,
it starts to execute task τj and is called a task agent. Later,
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once it arrives at cell gj , it has executed task τj and becomes
a free agent again. A MAPD instance is solved iff all tasks
are executed in a bounded amount of time after they have
been inserted into the system. The MAPD problem models
applications such as warehouse robots that move shelves
(Wurman, D’Andrea, and Mountz 2008), aircraft towing
robots that move planes (Morris et al. 2016), and office
delivery robots that move packages (Veloso et al. 2015).

Most MAPD algorithms solve the multi-agent pathfinding
problem (Ma and Koenig 2017) in an inner loop. The multi-
agent pathfinding problem is to compute collision-free paths
for multiple agents and is NP-hard to solve optimally (Yu
and LaValle 2013b; Ma et al. 2016b). Ways of solving it
(and its variants) include reductions to other well-studied
combinatorial problems (Yu and LaValle 2013a; Erdem et
al. 2013; Surynek 2015) and dedicated algorithms based on
search and other techniques (Silver 2005; Standley 2010;
Wang and Botea 2011; Luna and Bekris 2011; Sharon et
al. 2013; Goldenberg et al. 2014; Wagner and Choset 2015;
Sharon et al. 2015; Cohen et al. 2016; Ma and Koenig 2016;
Ma, Kumar, and Koenig 2017; Nguyen et al. 2017). See (Ma
et al. 2016a; Felner et al. 2017) for complete surveys.

Token Passing (TP) (Ma et al. 2017) is a recent MAPD
algorithm that is efficient and effective. It assumes, like
many multi-agent pathfinding algorithms, discrete agent
movements in the main compass directions with uniform
velocity but can use MAPF-POST (Hönig et al. 2016a;
2016b) in a post-processing step to adapt its paths to contin-
uous forward movements with given translational velocities
and point turns with given rotational velocities. However, the
resulting paths might then not be effective since planning is
oblivious to this transformation. TP needs to repeatedly plan
time-minimal paths for agents that avoid collisions with the
paths of the other agents. We show how TP can be made even
more efficient by using Safe Interval Path Planning with
Reservation Table (SIPPwRT), our contribution to improve
SIPP (Phillips and Likhachev 2011) for this and many other
applications. We also show how TP can be made more
general by letting SIPPwRT directly compute continuous
forward movements and point turns with given velocities.
The resulting MAPD algorithm TP-SIPPwRT guarantees a
safety distance between agents and solves all well-formed
MAPD instances.



TP-SIPPwRT
TP (Ma et al. 2017) is a recent MAPD algorithm that
assumes discrete agent movements in the main compass
directions with a uniform velocity of typically one cell per
time unit on a grid. It is similar to Cooperative A* (Silver
2005) and can be generalized to a fully distributed MAPD
algorithm. We describe TP very briefly but its important
implication for this paper is that agents repeatedly plan paths
for themselves (in Steps TP1 and TP3 below), considering
the other agents as dynamic obstacles that follow their paths
and with which collisions need to be avoided. The agents
use space-time A* for this single-agent path planning.

A set of endpoints is any subset of cells that contains
at least all start cells of agents and all pickup and delivery
cells of tasks. The pickup and delivery cells are called
task endpoints. The other endpoints are called non-task
endpoints. A MAPD instance is well-formed iff the number
of tasks is finite, there are no fewer non-task endpoints than
agents, and there exists a path between any two endpoints
that does not pass through other endpoints (Cáp, Vokrı́nek,
and Kleiner 2015; Ma et al. 2017). TP solves all well-formed
MAPD instances (Ma et al. 2017).

TP operates as follows for a given set of endpoints: It uses
a token (a synchronized block of shared memory) that stores
the task set and the current paths, one for each agent. The
system repeatedly updates the task set in the token to contain
all unassigned tasks in the system and then sends the token
to some agent that is currently not following a path. The
agent with the token considers all tasks in the task set whose
pickup and delivery cells are different from the end cells of
all paths in the token. TP1: If such tasks exist, then the agent
assigns itself that task among these tasks whose pickup cell
it can arrive at the earliest, removes the task from the task
set, computes two time-minimal paths in the token, one that
moves the agent from its current cell to the pickup cell of
the task and then one that moves the agent from the pickup
cell to the delivery cell of the task, concatenates the two
paths into one path, and stores the resulting path. TP2: If
no such tasks exist and the agent is not in the delivery cell
of any task in the task set, then it stores the empty path in
the token (to wait at its current cell). TP3: Otherwise, the
agent computes and stores a time-minimal path in the token
that moves the agent from its current cell to some endpoint
that is different from both the delivery cells of all tasks in
the task set and from the end cells of all paths in the token.
(This rule is necessary to avoid deadlocks.) Each path the
agent computes has two properties: (1) It avoids collisions
with all other paths in the token; (2) No other paths in the
token use its end cell after its end time. Finally, the agent
releases the token, follows its path, and waits at the end cell
of the path.

We now show how TP can be made more general by re-
placing space-time A* with SIPPwRT, a version of SIPP that
computes continuous forward movements and point turns
with given velocities rather than discrete agent movements
in the main compass directions with uniform velocity. We
make some simplifying assumptions throughout this paper
even though TP-SIPPwRT and SIPPwRT could easily be
generalized beyond them, mostly because these assumptions

are necessary to compare TP-SIPPwRT against state-of-
the-art MAPD algorithms and, as a bonus, make it easier
to explain TP-SIPPwRT: We assume that each agent ai
is a disk with radius Ri ≤ L/2 and use its center as
its reference point. The configuration of an agent is a
pair of its location (cell) and orientation (main compass
direction). Agents always move from the center of their
current unblocked cell to the center of an adjacent unblocked
cell via the following available actions, besides waiting: a
point turn π/2 rads (ninety degrees) in either clockwise or
counterclockwise direction with a given rotational velocity
and a forward movement to the center of the adjacent cell
with a given translational velocity. The agents can accelerate
and decelerate infinitely fast. The paths of two agents are
free of collisions iff the interiors of the agent disks never
intersect when they follow their paths.

SIPPwRT
Space-time A* and SIPP are two versions of A* that both
plan time-minimal paths for agents from their current cells to
given goal cells, considering the other agents as dynamic ob-
stacles that follow their paths and with which collisions need
to be avoided. They both assume discrete agent movements
in the main compass directions with a uniform velocity of
typically one cell per time unit on a grid. Space-time A*
operates on pairs of cells and time steps, while SIPP groups
contiguous time steps during which a cell is not occupied
into safe (time) intervals for that cell and thus operates on
pairs of cells and safe intervals. This affords the A* search of
SIPP pruning opportunities because it is always preferable
for an agent to arrive at a cell earlier during the same safe
interval since it can then simply wait at the cell. Thus, if the
A* search of SIPP has already found a path that arrives at
some cell at some time during some safe interval and then
discovers a path that arrives at the same cell at a later time
in the same safe interval, then it can prune the latter path
without losing optimality. SIPP has already been used for
robotics applications (Narayanan, Phillips, and Likhachev
2012; Yakovlev and Andreychuk 2017). We generalize it to
continuous forward movements and point turns with given
velocities in the following, where a safe interval for a cell
is now a maximal contiguous interval during which the cell
is not occupied by dynamic obstacles. Since SIPPwRT, the
resulting version of SIPP, is guaranteed to discover collision-
free paths (like space-time A*) when used as part of TP, TP-
SIPPwRT, the resulting version of TP, continues to solve all
well-formed MAPD instances.

Reservation Table and Safe Intervals
SIPP represents the path of each dynamic obstacle as a
chronologically ordered list of cells occupied by the dy-
namic obstacle, which is not efficient since SIPP has to
iterate through all these lists to calculate all safe intervals
of a given cell. On the other hand, space-time A* maintains
a reservation table that is indexed by a cell and a time step,
which allows for the efficient calculation of all safe intervals
of a given cell.

SIPPwRT improves upon SIPP using a version of a
reservation table that handles continuous agent movements



with given velocities and is indexed by a cell. A reservation
table entry of a given cell is a priority queue that contains
all reserved intervals for that cell in increasing order of their
lower bounds. A reserved interval for a cell is a maximal
contiguous interval during which the cell is occupied by
some dynamic obstacle. The reservation table allows SIPP-
wRT to implement all operations efficiently that are needed
by TP-SIPPwRT, namely to (1) calculate all safe intervals of
a given cell; (2) add reservation table entries after a new path
has been calculated; and (3) delete reservation table entries
that refer to irrelevant times in the past in order to keep the
reservation table small.
Function GetSafeIntervals. GetSafeIntervals(cell) returns
all safe intervals for cell cell in increasing order of their
lower bounds. The safe intervals for the cell are obtained as
the complements of the reserved intervals for the cell with
respect to interval [0,∞]. For safe interval i = [i.lb, i.ub]
and a dynamic obstacle departing from cell cell at time
i.lb, dep cfg[cell, i] is the configuration of the dynamic
obstacle at time i.lb. It is NULL iff i.lb ≤ current t.
Similarly, for safe interval i = [i.lb, i.ub] and the dynamic
obstacle arriving at cell cell at time i.ub, arr cfg[cell, i] is
the configuration of the dynamic obstacle at time i.ub. It is
NULL iff i.ub =∞.

Time Offsets
The safe intervals of a cell represent the times during which
the cell is not occupied. However, this does not mean that
an agent can arrive at any of those times at the cell since
the agent might still collide with a dynamic obstacle that has
just departed from the cell or is about to arrive at the cell.
Thus, the lower and upper bounds of a safe interval have to
be tightened using the following time offsets.

Function Offset(cfg1, cfg2) returns the time offset ∆T that
expresses the minimum amount of time the center of some
unknown agent a1 with safety radius R1 and translational
velocity vtrans,1 needs to depart from the center of a cell
cfg1.cell = l with configuration cfg1 before the center of
some unknown agent a2 with safety radius R2 and transla-
tional velocity vtrans,2, coming from some cell l′, arrives at
the center of the same cell cfg2.cell = l with configuration
cfg2 to avoid a collision. The time offset is zero iff either
cfg1 = NULL or cfg2 = NULL, meaning that either agent
a1 or agent a2 does not exist. The calculation of the time
offset requires only knowledge of the configurations, safety
radii, and velocities of both agents.1

Assume that agent a2 departs from cell l′ at time 0 (and
thus arrives at cell l at time t′ = L

vtrans,2
) and agent a1 departs

from cell l at time td ≤ L
vtrans,2

. D(t) is the distance between
the agents, where t is the amount of time elapsed after agent
a2 departs from cell l′. It must hold that D(t) ≥ R1 +R2 to
avoid that the two agents collide. We distinguish three cases
to calculate the time offset ∆T :

1In the pseudocode of SIPPwRT, we show how to keep track of
the configurations but do not include the safety radii and velocities
in the configurations for ease of readability (although this needs to
be done in case they are not the same for all agents and times).
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Figure 1: Left: Two agents move in the same direction.
Middle: D is at its minimum for the vtrans,1 < vtrans,2 case.
Right: D is at its minimum for the vtrans,1 ≥ vtrans,2 case.
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Figure 2: Left: Two agents move in orthogonal directions.
Right: D is at its minimum.

(a) Same Direction. Both agents move in the same direc-
tion (meaning that the orientations of configurations cfg1
and cfg2 are equal), see Figure 1 (left), where gray lines
connect the centers of cells. In this case, D(t) = L −
vtrans,2t+ vtrans,1(t− td). We now distinguish two sub-cases
to show that the time offset is ∆T = R1+R2

min(vtrans,1,vtrans,2)
.

(a1) Case vtrans,1 < vtrans,2. This case is shown in Figure
1 (middle).D(t) decreases as the time t increases.D(t) thus
reaches its minimum at the time t = t′′ = L

vtrans,2
when agent

a2 arrives at cell l. Substituting t = L
vtrans,2

back into D(t) ≥
R1 +R2, we have

D(t) = L− vtrans,2t + vtrans,1(t− td) = vtrans,1(
L

vtrans,2
− td) ≥ R1 + R2.

Therefore, td ≤ L
vtrans,2

− R1+R2

vtrans,1
. The time offset ∆T is thus

∆T = t′ −max td = L
vtrans,2

− ( L
vtrans,2

− R1+R2

vtrans,1
) = R1+R2

vtrans,1
.

(a2) Case vtrans,1 ≥ vtrans,2. This case is shown in Figure
1 (right). D(t) decreases before agent a1 starts to move and
then increases as the time t increases. D(t) thus reaches its
minimum at the time t = td when agent a1 starts to move.
Substituting t = td back into D(t) ≥ R1 +R2, we have

D(t) = L− vtrans,2t + vtrans,1(t− td) = L− vtrans,2td ≥ R1 + R2.

Therefore, td ≤ L−(R1+R2)
vtrans,2

. The time offset is thus ∆T =

t′ −max td = L
vtrans,2

− L−(R1+R2)
vtrans,2

= R1+R2

vtrans,2
.

(b) Orthogonal Directions. Both agents move in
orthogonal directions, see Figure 2. In this case, D(t) =√

(vtrans,1(t− td))2 + (L− vtrans,2t)2. We determine the
time t at which D(t) ≥ 0 reaches its minimum by solving
∂D2

∂t = 0. Substituting the result t =
v2

trans,1td+vtrans,2L

v2
trans,1+v2

trans,2
into

D2 ≥ (R1 +R2)2, we have
D

2
(t) = (L− vtrans,2t)

2
+ (vtrans,1(t− td))

2

=
(vtrans,1(vtrans,2td − L))2

(v2
trans,1 + v2

trans,2)
≥ (R1 + R2)

2
.

Since L ≥ vtrans,2td, we have vtrans,1(L − vtrans,2td)

≥
√
v2

trans,1 + v2
trans,2(R1 + R2). Therefore, td ≤



vtrans,1L−
√

v2
trans,1+v2

trans,2(R1+R2)

vtrans,1vtrans,2
. The time offset is thus ∆T

= t′ − max td = L
vtrans,2

− vtrans,1L−
√

v2
trans,1+v2

trans,2(R1+R2)

vtrans,1vtrans,2
=√

v2
trans,1+v2

trans,2(R1+R2)

vtrans,1vtrans,2
.

(c) Opposite Directions. Both agents move in opposite
directions, that is, agent a1 moves from cell l to cell l′
and agent a2 moves from cell l′ to cell l. The time offset
is set to allow agent a1 to arrive at cell l′ even before
agent a2 departs from cell l′. In this case, the time offset is
∆T = L

vtrans,1
+ L

vtrans,2
, which is the sum of the times that agent

a1 needs to move from cell l to cell l′ and that agent a2 needs
to move from cell l′ to cell l. We later show that SIPPwRT
avoids collisions when it uses all bounds simultaneously.

Increased/Decreased Bounds
The algorithm calls the following functions to tighten the
lower and upper bounds of safe interval i during which an
agent can stay at cell l = cfg.cell safely.

The algorithm calls Function GetLB1(cfg, i) for an agent
a2 to return maxj(j.lb + Offset(dep cfg[cfg.cell, j], cfg)).
Here, j.lb + Offset(dep cfg[cfg.cell, j], cfg) is the
increased lower bound for each safe interval j in
GetSafeIntervals(cfg.cell) with j.lb ≤ i.lb. For agent
a2 that arrives at cell l = cfg.cell from another cell l′ with
configuration cfg, the idea is to prevent it from colliding
with any dynamic obstacle a1 that departs from cell l with
configuration dep cfg[cfg.cell, j] before a2 arrives at cell l.

The algorithm calls Function GetUB1(cfg, i) for an agent
a1 to return minj(j.ub − Offset(cfg, arr cfg[cfg.cell, j])).
Here, j.ub − Offset(cfg, arr cfg[cfg.cell, j]) is the
decreased upper bound for each safe interval j in
GetSafeIntervals(cfg.cell) with j.ub ≥ i.ub. For agent
a1 that departs from cell l = cfg.cell with configuration cfg,
the idea is to prevent it from colliding with any dynamic
obstacle a2 that arrives at cell l from another cell l′ with
configuration arr cfg[cfg.cell, j] after a1 departs from cell l.

The algorithm calls Function GetLB2(cfg, i) for an agent
a1 to return maxj(j.lb + L

v′
trans
− L

vtrans
). Here, j.lb + L

v′
trans
−

L
vtrans

is the increased lower bound for each safe interval
j in GetSafeIntervals(cfg.cell) where the orientation of
dep cfg[cfg.cell, j] is the same as that of cfg and j.lb ≤
i.lb. For agent a1 that departs from cell l = cfg.cell with
configuration cfg and translational velocity vtrans and moves
also toward cell l′, the idea is to prevent it from arriving at
cell l′ earlier than (and thus “passing through”) any dynamic
obstacle a2 that departs from cell l before agent a1 with
configuration dep cfg[cfg.cell, j] and translational velocity
v′trans and moves also toward cell l′.

The algorithm calls Function GetUB2(cfg, i) for an agent
a1 to return minj(j.lb + L

v′
trans
− L

vtrans
). Here, j.lb + L

v′
trans
−

L
vtrans

is the decreased upper bound for each safe interval
j in GetSafeIntervals(cfg.cell) where the orientation of
dep cfg[cfg.cell, j] is the same as that of cfg and j.lb ≥
i.ub. For agent a1 that departs from cell l = cfg.cell with
configuration cfg and translational velocity vtrans and moves
also toward cell l′, the idea is to prevent it from arriving

at cell l′ later than (and thus “being passed through” by)
any dynamic obstacle a2 that departs from cell l after agent
a1 with configuration dep cfg[cfg.cell, j] and translational
velocity v′trans and moves toward cell l′.

Admissible H-Values
Step TP1 of TP-SIPPwRT requires an agent to use SIPPwRT
twice, namely (1) to plan a time-minimal path from its
current configuration to a candidate set of endpoints (pickup
cells) and (2) to plan a time-minimal path from the resulting
configuration to a particular endpoint (a delivery cell). Step
TP3 requires the agent to use SIPPwRT once to plan a time-
minimal path from its current configuration to a candidate
set of endpoints (to avoid deadlocks). The agent always
moves along each path with given (fixed) translational and
rotational velocities (unless it waits). Thus, SIPPwRT has to
plan only paths to a given set G of one or more endpoints.
By ignoring the dynamic obstacles, we determine the admis-
sible h-values needed for the A* search of SIPPwRT to plan
time-minimal paths as follows: We calculate a time-minimal
path that excludes waiting for the agent from each configura-
tion cfg to each configuration cfg′ whose cell is an endpoint
(by searching backward once from each configuration cfg′).
We then use the minimum heuristic (Stern, Goldenberg,
and Felner 2017) h(cfg, G) = mincfg′.cell∈G h(cfg, cfg′) as
admissible h-value of configuration cfg, where h(cfg, cfg′)
is the calculated time of the time-minimal path from cfg
to cfg′. In practice, if set G is large and endpoints are
densely distributed across the grid, it is more efficient to
use h(cfg, G) = 0 (as we do for Step TP3 of TP-SIPPwRT)
since it can be calculated faster even though SIPPwRT might
expand more nodes.

Pseudocode
Algorithm 1 shows the pseudocode of SIPPwRT, which
plans a time-minimal path for an agent with translational
velocity vtrans and rotational velocity vrot from its configu-
ration start cfg at time current t to a cell in set G. SIPPwRT
performs a regular A* search with nodes that are pairs of
configurations of the agent and safe intervals. The g-value
g[n] of a node n = 〈n.cfg, n.int〉 with configuration n.cfg
and safe interval n.int = [n.int.lb, n.int.ub] is the earliest
discovered time in n.int when the agent can be in configura-
tion n.cfg. The start node is n = 〈start cfg, [current t,∞]〉
with g[n] = current t. The safe interval n.int of the start
node expresses that the agent can wait forever in its current
configuration. A node n is a goal node iff the cell of its
configuration is in set G and the agent can wait forever in
its configuration (n.int.ub =∞).

In our implementation of SIPPwRT, each action is a turn-
and-move action, i.e., a point turn into one of the four
compass directions followed by a wait (when necessary)
and then a forward movement to a neighboring unblocked
cell. Since only forward movements define the temporal
constraints between safe intervals of neighboring cells, the
state space of our search remains unaffected by the use of
turn-and-move actions instead of separate point turn, move,
and wait actions independently.



Algorithm 1: SIPPwRT.

1 Function SIPPwRT(start cfg, G, current t, vtrans, vrot)
2 nstart ← NewNode(〈start cfg, [current t,∞]〉);
3 g[nstart] ← current t;
4 OPEN← {nstart};
5 while OPEN 6= ∅ do
6 n← arg minn′∈OPEN(g[n′] + h(n′.cfg, G));
7 OPEN← OPEN \ {n};
8 if n.cell ∈ G and n.int.ub =∞ then
9 return path from start cfg to n.cfg;

10 successors← GetSuccessors(n);
11 foreach n′ ∈ successors do
12 if g[n′] is undefined then
13 g[n′]←∞;

14 if g[n′] > g[n] + cost[n, n′] then
15 parent[n′]← n;
16 g[n′]← g[n] + cost[n, n′];
17 if n′ /∈ OPEN then
18 OPEN← OPEN ∪ {n′};

19 return no path exists (does not happen for well-formed MAPD instances);
20 Function GetSuccessors(n)
21 successors← ∅;
22 foreach legal turn-and-move action in n do
23 cfg t← configuration resulting from executing the point turn of action in

n.cfg (cfg t.cell = n.cfg.cell);
24 ub1← GetUB1(cfg t, n.int);
25 lb2← GetLB2(cfg t, n.int);
26 ub2← GetUB2(cfg t, n.int);
27 lb← max((g[n] + ∆tturn(action, vrot)), lb2);
28 ub← min(ub1, ub2);
29 if lb ≤ ub then
30 cfg′ ← configuration resulting from executing the forward movement in

action in n.cfg t;
31 i′.lb← lb + ∆tmove(action, vtrans);
32 i′.ub← ub + ∆tmove(action, vtrans);
33 safeIntervals← GetSafeIntervals(cfg′.cell);
34 foreach i′′ ∈ safeIntervals do
35 lb1← GetLB1(cfg′, i′′);
36 if [lb1, i′′.ub] ∩ i′ 6= ∅ then
37 t′ ← max(i′.lb, lb1);
38 n′ ← NewNode(〈cfg′, i′′〉);
39 cost[n, n′]← t′ − g[n];
40 successors← successors ∪ {n′};

41 return successors;

Function GetSuccessors. GetSuccessors(n) calculates the
successors of node n by considering all legal turn-and-move
actions action available to the agent in configuration n.cfg
[Line 22]. Assume that executing the point turn of action
action takes ∆tturn(action, vrot) time units and results in
configuration cfg t with which the agent departs from its
current cell [Line 23]. The agent must depart from its current
cell no later than lb and no earlier than ub to avoid colliding
with dynamic obstacles that also visit its current cell [Lines
24-28]. If the agent can depart from its current cell [Line 29],
then assume that executing the forward movement of action
action in configuration cfg t takes ∆tmove(action, vtrans) time
units and results in successor configuration cfg′ [Line 30].
The agent waits an appropriate amount of time in configu-
ration cfg t after the point turn, then executes the forward
movement, and arrives in configuration cfg′ in interval
i′ = [lb + ∆tmove(action, vtrans), ub + ∆tmove(action, vtrans)]
[Lines 31-32]. The successors of node n are generated by
processing all safe intervals i′′ = [i′′.lb, i′′.ub] for the new
cell cfg′.cell of the agent [Lines 33-34]. The lower bound
of safe interval i′′ is increased from i′′.lb to lb1 to ensure

that the agent can arrive at its new cell without colliding
with dynamic obstacles that also visit its new cell [Line
35]. The updated safe interval [lb1, i′′.ub] is intersected with
interval i′ [Line 36]. If their intersection is non-empty, then
the agent can arrive at its successor configuration during
safe interval i′′. Only the earliest time t′ in the intersection
needs to be considered (since the agent can simply wait
in its successor configuration and the later times in the
intersection can thus be pruned, as argued earlier) [Line
37]. The resulting successor of node n is n′ = 〈cfg′, i′′〉
[Line 38], and the cost (here: time) of the transition from
node n to node n′ is cost[n, n′] = t′ − g[n] [Line 39]
(consisting of executing the point turn of action action
for ∆tturn(action, vrot) time units, waiting for t′ − g[n] −
∆tturn(action, vrot) − ∆tmove(action, vtrans) time units, and
then executing the forward movement of action action for
∆tmove(action, vtrans) time units), so that g[n′] = g[n] +
cost[n, n′] = t′ is the earliest discovered time in n′.int = i′′

when the agent can be in configuration n′.cfg = cfg′.
Main Routine. The main routine of SIPPwRT performs a
regular A* search. It initializes the g-value of the start node
and inserts the node into the OPEN list [Lines 2-4]. It then
repeatedly removes a node n with the smallest sum of g-
value and h-value g[n] + h(n.cfg, G) from the OPEN list
[Lines 6-7] and processes it: If the node is a goal node, then
it returns the path found by following the parent pointers
from the node to the start node [Lines 8-9]. Otherwise, it
generates the successors of the node [Line 10]. For each
successor, it initializes its g-value to infinity if the g-value is
still undefined [Lines 12-13]. It then checks whether the g-
value of the successor can be reduced by changing its parent
pointer to node n [Line 14]. If so, it changes the parent
pointer of the successor, reduces its g-value, and inserts it
into the OPEN list (if necessary) [Lines 15-18].
Theorem 1. The path returned by SIPPwRT from the start
configuration to a goal is free of collisions.

We prove Theorem 1 in the technical report.
Since all heuristics used by SIPPwRT are admissible

as argued earlier, using the argument in (Phillips
and Likhachev 2011) together with Theorem 1, it is
straightforward to show that SIPPwRT returns a time-
minimal path to a given set G of one or more endpoints
that does not collide with the paths of other agents in the
token and is complete for the single-agent path-planning
problems for function calls TP1 and TP3. We can thus rely
on the proof of Theorem 3 in (Ma et al. 2017) to show
that TP-SIPPwRT is complete for well-formed MAPD
instances.
Theorem 2. TP-SIPPwRT solves all well-formed MAPD
instances.

Simulated Automated Warehouses
We demonstrate the benefits of TP-SIPPwRT for automated
warehouses using both an agent simulator with perfect path
execution and a standard robot simulator with imperfect
path execution resulting from unmodeled kinodynamic con-
straints and motion noise by the MAPD algorithms. Figure
3 (left) shows an example on the agent simulator with 50



Figure 3: Left: Small simulated warehouse environment.
Right: Large simulated warehouse environment.

Table 1: Experiment 1. (Inapplicable entries are dashed.)
algorithm vtask

discrete
srvc time

discrete
makespan

srvc
time

make
span

plan
time

post-proc
time thpt stdy

thpt

TP-SIPPwRT
0.50

– –
944.03 2,475.58 0.90

–
0.397 0.433

0.75 601.69 1,755.22 0.92 0.552 0.632
1.00 435.26 1,392.00 0.83 0.689 0.782

CENTRAL
0.50

325.28 1,163
1,049.51 2,617.00

1,161.44
264.66 0.370 0.406

0.75 691.90 1,895.68 254.36 0.504 0.552
1.00 520.36 1,553.00 269.91 0.609 0.670

TP-A*
0.50

329.83 1,204
1,026.23 2,628.22

1.00
267.38 0.373 0.408

0.75 675.65 1,909.45 295.54 0.508 0.558
1.00 505.81 1,570.77 278.74 0.609 0.683

agents and cells of size 1 m× 1 m. Grey cells in columns
of grey cells are potential start cells for the agents. Colored
disks are the actual start cells, which are drawn randomly
from all potential start cells and are the non-task endpoints.
All agents face north in their start cells. Grey cells other
than the start cells are task endpoints (that would house
shelves in a warehouse even though we do not model shelves
here). The pickup and delivery cells of all tasks are drawn
randomly from all task endpoints. White cells are non-
endpoints.

The agents model circular warehouse robots. All agents
use the same rotational velocity vrot. The following rules im-
pose restrictions on their legal movements and translational
velocities: All free agents can move with high translational
free velocity vtrans = vfree through all cells because ware-
house robots that do not carry shelves can move through
all cells, including those that house shelves. All task agents
can move with slow translational task velocity vtrans = vtask
through only the pickup and delivery endpoints of their tasks
and all other non-endpoints since warehouse robots that
carry shelves cannot move through cells that house shelves.

Experimental Results
We now report our experimental results on a 2.50 GHz Intel
Core i5-2450M laptop with 6 GB RAM. Videos of sample
experiments can be found at
http://idm-lab.org/project-p.html
Experiment 1: MAPD Algorithms and Task Velocity. We
compare TP-SIPPwRT for vtask = 0.50, 0.75, and 1.00 m/s
on the agent simulator in the small simulated warehouse
environment of Figure 3 (left) to two MAPD algorithms that
both assume discrete agent movements with uniform veloc-
ity to the four neighboring cells, namely the original TP
(Ma et al. 2017) (labeled TP-A*) and CENTRAL (Ma et al.
2017), which repeatedly uses the Hungarian Method (Kuhn
1955) to assign tasks to agents and then Conflict-Based
Search (Sharon et al. 2015) to plan paths for the agents.
We first convert the paths produced by these two MAPD
algorithms from containing movements in the four compass
directions to containing forward movements and point turns.
We then use MAPF-POST (Hönig et al. 2016a) to adapt the
paths in polynomial time to continuous agent movements

with given velocities. Since MAPF-POST guarantees safety
distances between agents of L/

√
2 = 0.71 m, we use the

same radius of R = 0.5L/
√

2 = 0.35 m for all agents. We
use a runtime limit of 5 minutes per instance. We use 30
agents (agts) since CENTRAL, the most runtime-intensive
of our MAPD algorithms, can handle only slightly more than
30 agents without any timeouts. We use vfree = 1.00 m/s
and vrot = π/2 = 1.57 rad/s. We generate one sequence
of 1,000 tasks and insert them in the generated order into
the system with a task frequency (task freq) of 2 tasks in the
beginning of every second.

Figure 4 visualizes the throughput at time t [number of
tasks that finish execution per second in the 100-second
window (t − 100, t]], measured in tasks per second, as
a function of t, measured in seconds. The steady state
is the time interval when the throughput remains mostly
unchanged, determined by visual inspection of the graphs.
We use as steady state t ∈ [501, 2100] for vtask = 0.50 m/s,
t ∈ [501, 1500] for vtask = 0.75 m/s, and t ∈ [501, 1100] for
vtask = 1.00 m/s. The throughput at time t of TP-SIPPwRT
decreases earlier than the ones of TP-A* and CENTRAL
because fewer still unexecuted tasks are available toward the
end for TP-SIPPwRT than for them. Thus, TP-SIPPwRT is
more effective than them.

Table 1 reports the discrete service (srvc) time [time
until a task has finished execution after insertion into the
system according to the original plan with discrete agent
movements, averaged over all tasks], discrete makespan
[time when the last task has finished execution according
to the original plan with discrete agent movements], service
(srvc) time [time until a task has actually finished execution
after insertion into the system, averaged over all tasks],
makespan [time when the last task has actually finished exe-
cution], planning (plan) time [execution time of the MAPD
algorithm], and post-processing (post-proc) time [execution
time of MAPF-POST], all measured in seconds, as well
as the throughput (thpt) [throughput at time t averaged
over all times t whose throughputs are positive] and the
throughput in the steady state (stdy thpt) [throughput at time
t averaged over all times in the steady state], both measured
in number of tasks per second. Service time, makespan, and
throughput measure effectiveness, while the planning and
post-processing times measure efficiency. The planning time
of TP-SIPPwRT is less than one second for 30 agents and
1,000 tasks. It is on par with the one of TP-A* and smaller
than the one of CENTRAL. Furthermore, TP-SIPPwRT does
not have any post-processing time while both TP-A* and
CENTRAL have post-processing times of more than 250
seconds. Thus, TP-SIPPwRT is more efficient than them.
The service time and makespan of TP-SIPPwRT are smaller
than the ones of TP-A* and CENTRAL, while its throughput
is larger. Thus, TP-SIPPwRT is more effective than them.
Experiment 2: Number of Agents, Task Frequency, and
Task Velocity. We run TP-SIPPwRT with the same setup
as in Experiment 1 (including the same sequence of 1,000
tasks) for vtask = 0.50, 0.75, and 1.00 m/s, 10, 20, 30, 40,
and 50 agents, and task frequencies of 1, 2, 5, and 10 tasks
per second. Table 2 shows that the planning time of TP-
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Figure 4: Number of tasks executed per second in a moving 100-second window (t− 100, t] (that is, throughput at time t) as a
function of time t for different MAPD algorithms. Left: vtask = 0.50 m/s. Middle: vtask = 0.75 m/s. Right: vtask = 1.00 m/s.

Table 2: Experiment 2.
vtask 0.50 0.75 1.00

agts task
freq

srvc
time

make
span

plan
time thpt srvc

time
make
span

plan
time thpt srvc

time
make
span

plan
time thpt

10
1 2,809.72 6,771.00 0.84 0.146 1,834.97 4,764.28 0.86 0.213 1,357.21 3,818.00 0.72 0.270
2 3,029.59 6,759.41 0.85 0.157 2,077.68 4,768.89 0.84 0.215 1,584.62 3,784.00 0.73 0.274
5 3,181.97 6,789.41 0.86 0.155 2,185.29 4,748.33 0.86 0.225 1,710.76 3763.71 0.75 0.274

10 3,215.43 6,775.00 0.84 0.159 2,252.70 4,762.45 0.88 0.219 1,750.19 3,749.00 0.75 0.280

20
1 1,228.35 3,557.58 0.90 0.295 745.48 2,540.33 0.89 0.411 502.50 2,000.71 0.76 0.511
2 1,450.40 3,503.00 0.89 0.298 966.27 2,493.67 0.91 0.392 714.20 1,980.00 0.79 0.489
5 1,591.79 3,519.83 0.89 0.292 1,088.86 2,481.85 0.88 0.416 844.32 1,966.00 0.81 0.507

10 1,661.62 3,502.83 0.88 0.290 1,136.08 2,479.45 0.90 0.417 892.22 1,964.00 0.81 0.507

30
1 723.03 2,482.41 0.94 0.396 389.15 1,763.50 0.91 0.551 222.21 1,431.71 0.82 0.672
2 944.03 2,475.58 0.90 0.397 601.69 1,755.22 0.92 0.552 435.26 1,392.00 0.83 0.689
5 1,079.62 2,435.83 0.90 0.398 728.33 1,724.18 0.92 0.555 563.14 1,372.71 0.83 0.688

10 1,126.47 2,468.00 0.93 0.393 779.67 1,737.00 0.92 0.550 612.06 1,380.00 0.84 0.065

40
1 484.93 2,023.58 0.90 0.484 225.18 1,471.12 0.95 0.657 101.16 1,252.00 0.85 0.765
2 701.23 1,945.00 0.94 0.503 432.11 1,430.33 0.95 0.674 298.04 1,122.71 0.89 0.847
5 830.73 2,054.00 0.89 0.470 563.25 1,368.67 0.94 0.693 427.23 1,073.00 0.87 0.870

10 880.46 1,905.00 0.88 0.506 605.10 1,382.67 0.94 0.686 469.92 1,095.71 0.89 0.853

50
1 331.66 1,680.41 0.98 0.641 122.98 1,262.00 0.98 0.771 63.45 1,140.41 0.96 0.845
2 557.10 1,676.58 0.97 0.581 335.58 1,192.51 0.96 0.804 219.99 968.00 0.92 0.976
5 683.56 1,674.41 0.97 0.573 454.42 1,153.51 0.93 0.814 344.44 931.00 0.91 0.992

10 729.07 1,644.41 0.97 0.582 502.03 1,200.94 0.98 0.784 389.78 926.00 0.93 0.996

Table 3: Experiment 3.
vtask 0.50 0.75 1.00
agts srvc

time
make
span

plan
time thpt stdy

thpt
srvc
time

make
span

plan
time thpt stdy

thpt
srvc
time

make
span

plan
time thpt stdy

thpt
100 877.94 2,891.58 5.72 0.70 0.81 489.46 2,130.67 5.83 0.91 1.15 289.80 1,671.00 5.15 1.16 1.49
150 525.07 2,269.58 6.49 0.88 1.15 253.49 1,602.00 6.67 1.20 1.64 122.69 1,396.71 5.57 1.37 1.98
200 353.46 1,905.58 7.08 1.03 1.47 154.76 1,504.63 7.35 1.31 1.97 117.21 1,276.12 9.50 1.50 2.04
250 267.07 1,762.24 9.35 1.13 1.71 147.90 1,271.67 12.83 1.52 1.99 132.45 1,297.00 15.76 1.48 2.02

SIPPwRT is less than one second for up to 50 agents and
1,000 tasks. As expected, the service time decreases as the
task frequency decreases; the service time and makespan de-
crease and the throughput increases as the number of agents
increases; and the service time and makespan decrease and
the throughput increases as the task velocity increases.
Experiment 3: Environment Size, Number of Agents,
and Task Velocity. We run TP-SIPPwRT with the same
setup as in Experiment 1 but in the large simulated ware-
house environment of Figure 3 (right) for 100, 150, 200, and
250 agents and vtask = 0.50, 0.75, and 1.00 m/s. We use
one sequence of 2,000 tasks and a task frequency of 2 tasks
per second. Figure 5 visualizes the throughput at time t. We
use as steady state t ∈ [501, 1000]. Table 3 shows that the
planning time of TP-SIPPwRT is less than 16 seconds for
up to 250 agents and 2,000 tasks, justifying our claim that
it can compute paths for hundreds of agents and thousands
of tasks in seconds. Similarly to before, the service time and
makespan decrease and the throughput and planning time
increase as the number of agents increases; and the service
time and makespan decrease and the throughput increases as
the task velocity increases. There is an exception due to the
congestion resulting from many agents for 250 agents and
vtask = 1.00 m/s.
Experiment 4: Robot Simulator. We created a custom
model of the kinodynamic constraints of a differential-drive

Create2 robot from iRobot for the robot simulator V-REP
(Rohmer, Singh, and Freese 2013). Create2 robots have
a cylindrical shape with radius 0.175 m and can reach a
translational speed of 0.5 m/s and a rotational speed of
4.2 rad/s. We use vfree = 0.40 m/s, vtask = 0.20 m/s,
vrot = π = 3.14 rad/s, and R = 0.40 m as conservative
values to allow the robots to follow their paths safely despite
unmodeled kinodynamic constraints and motion noise by
TP-SIPPwRT. We implemented a PID controller that uses
[x, y, θ]T (given by V-REP) as the current state and the
desired next cell with the associated desired arrival time
(given by TP-SIPPwRT) as the goal state. The PID controller
corrects for heading errors by orienting the robot to face
the desired next cell while simultaneously adjusting the
translational speed to let the robot arrive at the desired next
cell at the desired arrival time. We limit our experiment to
the small warehouse environment of Figure 6 for 10 robots
due to the slow runtime of V-REP. We use one sequence of
20 tasks and a task frequency of 2 tasks per second. The
planning time of TP-SIPPwRT is 2 ms. All robots follow
their paths safely, resulting in a service time of 90.57 s and
a makespan of 171.16 s.

Conclusions and Future Work
We presented the efficient and effective algorithm TP-
SIPPwRT for the Multi-Agent Pickup and Delivery
problem. We suggest the following future research
directions: (1) Make existing (even optimal) multi-agent
pathfinding algorithms more general by combining them
with our SIPPwRT to compute continuous agent movements
with given velocities. The resulting algorithms could, for
example, be used to make CENTRAL more general. (2)
Include additional kinodynamic constraints into SIPPwRT
and TP-SIPPwRT, such as acceleration and deceleration
constraints, to allow robots to follow their paths even more
safely. (3) Make TP-SIPPwRT decentralized.
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