
IEEE TRANSACTIONS ON ROBOTICS 1

Trajectory Planning for Quadrotor Swarms
Wolfgang Hönig, James A. Preiss, T. K. Satish Kumar, Gaurav S. Sukhatme, and Nora Ayanian

Abstract—We describe a method for multi-robot trajectory
planning in known, obstacle-rich environments. We demonstrate
our approach on a quadrotor swarm navigating in a warehouse
setting. Our method consists of three stages: 1) roadmap gener-
ation which generates sparse roadmaps annotated with possible
inter-robot collisions; 2) discrete planning which finds valid
execution schedules in discrete time and space; and 3) contin-
uous refinement that creates smooth trajectories. We account
for the downwash effect of quadrotors, allowing safe flight in
dense formations. We demonstrate computational efficiency in
simulation with up to 200 robots and physical plausibility with an
experiment on 32 nano-quadrotors. Our approach can compute
safe and smooth trajectories for hundreds of quadrotors in dense
environments with obstacles in a few minutes.

Index Terms—UAV, quadrotor, swarm, multi-robot systems

I. INTRODUCTION

TRAJECTORY planning is a fundamental problem in
multi-robot systems. Given a set of robots with known

initial locations and a set of goal locations, the task is to
find a set of continuous functions that move each robot
from its start position to its goal, while avoiding collisions
and respecting dynamic limits. The unlabeled case allows
robots to swap goal locations with each other; in the labeled
case the goal assignment is given. Trajectory planning is a
core subproblem of various applications including search-and-
rescue, inspection, and delivery.

A large body of work has addressed this problem with varied
discrete and continuous formulations. However, no existing
solution simultaneously satisfies the goals of completeness,
physical plausibility, optimality in time or energy usage, and
good computational performance. In this work, we present a
method that attempts to balance these goals.

Our method uses a graph-based planner to compute a solu-
tion for a version of the problem that is discretized in space and
time, and then refines this solution into smooth trajectories in
a separate, decoupled optimization stage. The roadmap for the
discrete planner can be automatically generated from a given
environment and robot description. We take the downwash
effect of quadrotors into account, preserving safety during
dense formation flights. Our method is complete with respect
to the resolution of the discretization, and locally optimal with
respect to an energy-minimizing integral-squared-derivative
objective function. We also present an anytime iterative re-
finement scheme that improves the trajectories within a given
computational budget. We support user-specified smoothness
constraints and dynamic limits and provide simulations with

All authors are with the Department of Computer Science, University of
Southern California, Los Angeles, CA, USA.

Email: {whoenig, japreiss}@usc.edu,
tkskwork@gmail.com, {gaurav, ayanian}@usc.edu

This work was partially supported by the ONR grants N00014-16-1-2907
and N00014-14-1-0734, and the ARL grant W911NF-14-D-0005.

Fig. 1. Long exposure of 32 Crazyflie nano-quadrotors flying through an
obstacle-rich environment.

up to 200 robots and a physical experiment with 32 quadrotors,
see Fig. 1.

We extend our previous work [1] in the following ways:
1) Support of arbitrary continuous environments, i.e., we

remove the limitations that start/goal locations and ob-
stacles must be aligned with a user-defined grid.

2) Introduction of a generic multi-robot path planning
framework which can be used for non-quadrotor robots
as well. Specifically, we introduce Multi-Agent Path
Finding with Generalized Conflicts (MAPF/C) and an
efficient bounded suboptimal solver for MAPF/C problem
instances. This also enables us to solve the labeled
trajectory planning problem.

3) New experimental results analyzing the computational
efficiency of and validating our approach in simulation
and on a physical quadrotor swarm.

II. RELATED WORK

A simple approach to multi-robot motion planning is to
repurpose a single-robot planner and represent the Cartesian
product of the robots’ configuration spaces as a single large
joint configuration space [2]. Robot-robot collisions are repre-
sented as configuration-space obstacles. However, the high-
dimensional search space is computationally infeasible for
large teams.

Many works have approached the problem from a graph
search perspective [3], [4]. These methods are adept at dealing
with maze-like environments and scenarios with high conges-
tion. Some represent the search graph implicitly [5], so they
are not always restricted to a predefined set of points in con-
figuration space. However, directly interpreting a graph plan
as a trajectory results in a piecewise linear path, requiring the
robot to fully stop at each graph vertex to maintain dynamic
feasibility. It is possible, however, to use these planners to
resolve ordering conflicts and refine the output for execution
on robots [6].

IEEE TRANSACTIONS ON ROBOTICS 2

Environment (OcTree)
Robot Model (Shape)

Conflict Model (Shape)

Start/Goal Locations

discrete
schedule

Input Output

Trajectory
Optimization
QP

Dynamic Limits

Iterative
Refinement

Trajectories

Roadmap

Conflict-annotated
roadmap

Grid SPARS

Roadmap
Generation

ECBSILP

MAPF/C
Solver

Spatial
Partition
SVM

Scaling

Graph-based Planning
Continuous Trajectory
Optimization

Trajectories

Conflict
Annotation
FCL Swept

Corridors

Fig. 2. Components of our approach. The user specifies a model of the environment (e.g. using an octree), a model of the robot (e.g. sphere), start/goal
locations, a robot-robot collision model (e.g. ellipsoid), and dynamic limits (e.g. maximum acceleration). We generate a sparse roadmap from the environment,
including the start and goal locations as vertices. The collision model is used to annotate the roadmap with additional inter-robot conflicts. This annotated
roadmap can be used to find a discrete schedule for each robot. This schedule defines a corridor for each robot in which trajectory optimization is used to
generate smooth trajectories. Finally, the trajectories are scaled in order to fulfill the dynamic limits. The pictures on the bottom show one example of two
quadrotors swapping their positions.

Some authors have solved the formation change problem
in a continuous setting [7], [8], but such methods are often
tightly coupled, solving one large optimization problem in
which the decision variables define all robots’ trajectories.
These approaches are typically demonstrated on smaller teams
and do not easily scale to the size of a team in which we are
interested. The authors of [9] propose a method that, similar
to ours, uses conservative separating hyperplanes to decouple
the optimization problem. However, the approach requires
assigning a priority order to the robots. Others decouple the
problem but do not support the level of smoothness in our
solution, and do not show results on large teams [10]. The
method of Turpin et al. [11] is computationally fast, but offsets
the different trajectories in time, resulting in much longer time
durations. Velocity profile methods [12] handle kinodynamic
constraints well but are not able to fully exploit free space
in the environment. Collision-avoidance approaches [13], [14]
let each robot plan its trajectory independently and resolve
conflicts in real time when impending collisions are detected.
These methods are distributed and reactive, however, they
do not provide any means to optimize the trajectories for
objectives such as time or energy use, and they are poorly
suited to problems in maze-like environments.

Our method builds upon Spline-based refinement of way-
point plans [15], [16] by adding support for three-dimensional
ellipsoidal robots, environmental obstacles, and an anytime
refinement stage to further improve the plan after generating
an initial set of smooth trajectories. We demonstrate that
our iterative refinement produces trajectories with significantly

smoother dynamics than the initial trajectories.

III. APPROACH

We now formalize the trajectory planning problem for any
homogeneous robot team and outline our method to solve this
class of problems. Furthermore, we introduce the robot model
for quadrotors. Later sections discuss the steps of our approach
in more detail, using a quadrotor swarm as example.

A. Problem Statement

Consider a team of N robots in a bounded environment
containing convex obstacles O1 . . .ONobs

. Boundaries of the
environment are defined by a convex polytopeW . The convex
set of points representing a robot at position q ∈ R3 is RE(q).
The free configuration space for a single robot is thus given
by

F = (W \ (
⋃
hOh)) �RE(0) (1)

where � denotes the Minkowski difference. We allow a
separate inter-robot collision model and define RR(q) to be
the convex set of points a robot at position q requires to operate
safely when close to another robot. For example, in the case
of quadrotors RR(q) can model the downwash effect.

Let f i : [0, T]→ R3 be a trajectory for each robot ri, where
T ∈ R>0 is the total time duration until the last robot reaches
its goal. All trajectories are considered collision-free if there
are no robot-environment collisions, i.e. f i(t) ∈ F and no
robot-robot collisions, i.e.

RR(f i(t)) ∩RR(f j(t)) = ∅ ∀ i 6= j, 0 ≤ t ≤ T. (2)

IEEE TRANSACTIONS ON ROBOTICS 3

In the labeled trajectory planning problem we are given a
start and goal position for each robot si, gi ∈ F , where start
and goal inputs must satisfy the robot-robot collision model,
i.e. RR(si)∩RR(sj) = ∅ and RR(gi)∩RR(gj) = ∅ for all
i 6= j.

We seek the total time duration T and collision-free trajec-
tories f i such that:
• f i(0) = si

• f i(T) = gi

• f i is continuous up to user-specified derivative order C
• f i is kinodynamically feasible for robot i.
In the unlabeled case we allow the robots to exchange goal

locations, i.e. we additionally seek an assignment of each robot
to a goal position such that f i(T) = gφ(i), where φ is a
permutation of 1 . . . N .

B. Components

Our method combines the strengths of two conceptually dif-
ferent approaches to multi-robot trajectory planning problems.
The first approach is commonly used in the AI community and
uses a graph to represent a roadmap and graph-search based
algorithms to find collision-free schedules for all robots. This
can be done efficiently for hundreds of robots even in maze-
like environments. However, dynamic constraints of robots
are ignored. Furthermore, creating an appropriate roadmap
for an environment that fulfills all requirements of the search
algorithm is challenging. The second approach, commonly
used in robotics, is based on trajectory optimization. This
approach can deal with kinodynamic constraints, but does not
scale well to hundreds of robots.

Our approach is outlined in Fig 2. We use models of the
environment and the robots to generate a roadmap suitable
for planning for a single robot. We annotate the roadmap
with additional edge and vertex conflicts to model constraints
caused by inter-robot dependencies. We can then use an
extended multi-robot planner to find discrete schedules for
each robot. These schedules can be executed on real quadrotors
without collisions, but they require the quadrotors to stop
at each waypoint. Finally, a trajectory optimization stage
generates smooth and conflict-free trajectories based on the
discrete schedule. This approach can be used for any multi-
robot trajectory planning problem, however the exact details
for each step vary. In this paper we present the components
needed to plan trajectories for a swarm of quadrotors, directly
taking downwash into account.

C. Robot Model for Quadrotor Trajectory Planning

As aerial vehicles, quadrotors have a six-dimensional con-
figuration space. However, as shown in [17], quadrotors are
differentially flat in the flat outputs (x, y, z, ψ), where x, y, z
is the robot’s position in space and ψ its yaw angle (heading).
Differential flatness implies that the control inputs needed
to move the robot along a trajectory in the flat outputs are
algebraic functions of the flat outputs and a finite number
of their derivatives. Furthermore, in many applications, a
quadrotor’s yaw angle is unimportant and can be fixed at

Fig. 3. Axis-aligned ellipsoid model of robot volume. Tall height prevents
downwash interference between quadrotors.

ψ = 0. We therefore focus our efforts on planning trajectories
in three-dimensional Euclidean space.

While some multi-robot planning work has considered
simplified dynamics models such as kinematic agents [6]
or double-integrators [7], our method produces trajectories
with arbitrary smoothness up to a user-defined derivative.
This goal is motivated by [17], where it was shown that
a continuous fourth derivative of position is necessary for
physically plausible quadrotor trajectories, because it ensures
that the quadrotor will not be asked to change its motor speeds
instantaneously.

Rotorcraft generate a large, fast-moving volume of air
underneath their rotors called downwash. The downwash force
is large enough to cause a catastrophic loss of stability when
one rotorcraft flies underneath another. We model downwash
constraints as inter-robot collision constraints by treating each
robot as an axis-aligned ellipsoid of radii 0 < rx = ry � rz ,
illustrated in Fig. 3. Empirical data collected in [18], [19]
support this model. The set of points representing a robot at
position q ∈ R3 is given by

RR(q) = {Ex+ q : ‖x‖2 ≤ 1} (3)

where E = diag(rx, ry, rz).

IV. ROADMAP GENERATION

A roadmap is an undirected connected graph of the environ-
ment GE = (VE , EE), where each vertex v ∈ VE corresponds
to a location in F and each edge (u, v) ∈ EE denotes that
there is a linear path in F connecting u and v. We also require
that there exists a vertex vis ∈ VE corresponding to each start
location si and that there exists a vertex vig ∈ VE for each
goal location gi. Let loc : VE → R3 be a function that returns
the location for each vertex.

The ideal roadmap should have the following properties:
1) be connected, i.e., if a path between two points in F

exists, there should be a path in the roadmap as well;
2) lead to optimal results, i.e., the shortest path between two

points in F can be approximated well by a path in the
roadmap; and

3) be sparse, i.e., have a small number of vertices and edges.
The last property is desired because dense roadmaps result
in a higher number of inter-robot conflicts, which can create
a significant computational burden for the discrete planning

IEEE TRANSACTIONS ON ROBOTICS 4

(a) Grid-based roadmap. (b) SPARS-based roadmap. (c) Conflicting edges.

Fig. 4. Example of generated roadmaps using the grid approach (a) and SPARS (b) with the same desired dispersion. The roadmaps can be annotated with
edge and vertex conflicts based on the inter-robot conflict model RR. Conflicting edges for black edge are marked in red in (c). The edges are in conflict
because it is possible to place the robots on the edge such that (2) is violated.

stage. The first two properties are in conflict with the last
property. Thus, roadmap generation should balance those
goals. A useful property of a roadmap is its dispersion, which
is the radius of the largest sphere centered in F that does not
contain any vertex location. Dispersion is a measure of the
uniformity of the roadmap. In this work we tested two different
approaches, namely 6-connected grid structures, and sparse
roadmap spanners. Here, spanner refers to a concept from
graph theory where a spanner of a graph is a subgraph with
fewer edges such that the distance between any two vertices is
within a user-provided bound compared to the original graph.

The grid roadmap generator places potential vertices
equidistant from each other. A vertex is only added if it is
in F . Edges are added to the six closest neighbors if there
would be no collision between the robot and the environment
when traversing that edge. Roadmaps generated this way have
a regular structure, reducing inter-robot conflicts and providing
a low dispersion for a fixed number of vertices. However,
completeness and optimality are only achieved as the grid-size
approaches zero, which is not desirable due to our sparseness
requirement. Thus, the generated roadmaps are often missing
important edges and vertices and fail to achieve the first two
desired properties.

The family of SPArse Roadmap Spanner algorithms
(SPARS) [20] attempts to generate roadmaps that are bounded
sub-optimally with respect to distance (up to a user-provided
stretch factor). Unlike graph spanners, the algorithm attempts
to reduce both vertices and edges, rather than edges only.
The SPARS algorithm uses a dense roadmap similar to those
generated by PRM* [21] and only keeps a subset of vertices
and edges such that the distance sub-optimality is guaranteed.
The SPARS2 algorithm removes the requirement of explicitly
constructing a dense roadmap, reducing the memory overhead
but at the cost of a larger roadmap. We do not have a
requirement for a small memory usage and used the SPARS
algorithm.

In both grid and SPARS cases we add vertices to the
roadmap corresponding to the start and goal locations if such
vertices are not already part of the roadmap. We connect those
additional vertices to up to six neighbors within a search radius
if the resulting edge could be traversed without any collision

with the environment. Example roadmaps are shown in Fig. 4.

V. CONFLICT ANNOTATION

Roadmaps are typically generated to plan the motion for a
single robot. If the same roadmap is used by multiple robots,
there are additional constraints:

1) Vertex-Vertex Constraints: two robots may not occupy
two vertices which are in close proximity to each other
at the same time.

2) Edge-Edge Constraints: two robots may not traverse two
edges if a collision could occur during the traversal, see
Fig. 4(c).

3) Edge-Vertex Constraints: one robot may not traverse an
edge if a collision could occur with another stationary
robot.

The goal of the conflict annotation is to identify the set of
conflicts for each edge and vertex. The output is a graph where
each vertex and each edge is annotated with a conflict set.

We define the following functions:

conV V (v) = {u ∈ VE |
RR(loc(u)) ∩RR(loc(v)) 6= ∅}

conEE(e) = {d ∈ EE |R∗R(d) ∩R∗R(e) 6= ∅}
conEV (e) = {u ∈ VE |RR(loc(u)) ∩R∗R(e) 6= ∅}

(4)

where R∗R(e) is the set of points swept when traversing edge
e. We refer to this method as swept collision model.

The swept collision model is conservative, allowing edge
traversals with an arbitrary velocity profile. Alternatively, we
can assume that the motion on the edge uses a known velocity
profile (such as constant velocity), where mot(e, t) refers to
the position of the robot traversing edge e for t ∈ [0, 1]. We
can then use a standard continuous collision definition as used
in the Flexible Collision Library (FCL) [22]:

conEE′(e) = {d ∈ EE | ∃t ∈ [0, 1]

RR(mot(d, t)) ∩RR(mot(e, t)) 6= ∅}
conEV ′(e) = {u ∈ VE | ∃t ∈ [0, 1]

RR(loc(u)) ∩RR(mot(e, t)) 6= ∅}

(5)

Collision checking is required for all vertex and edge pairs,
leading to quadratic time complexity.

IEEE TRANSACTIONS ON ROBOTICS 5

VI. DISCRETE PLANNING

The annotated roadmap with specified start/goal vertices is
the input to the graph planning stage of our method, which we
describe in this section. We first state the MAPF/C problem, a
generalized version of the Multi-Agent Path Finding problem
(MAPF) that explicitly avoids conflicts in a conflict-annotated
roadmap. We then introduce two different planners, an optimal
planner that solves the unlabeled problem and a bounded-
suboptimal planner for the labeled case. Finally, we discuss
methods for goal assignment to allow using the bounded-
suboptimal planner for the unlabeled case as well.

A. Multi-Agent Path Finding with Generalized Conflicts
(MAPF/C)

We are given a roadmap of the environment (GE) with
additional conflict sets for generalized vertex-vertex (conV V),
edge-edge (conEE), and edge-vertex (conEV) conflicts as
generated in the previous section. Additionally, we are given
a unique start vertex for each robot vis ∈ VE . In the labeled
case we are given a unique goal for each robot vig ∈ VE ; in
the unlabeled case these goals are interchangeable.

At each timestep, a robot can either wait at its current vertex
or traverse an edge. A discrete schedule pi for each robot is
composed of a sequence of K + 1 locations:

pi = loc(ui0), loc(ui1), . . . , loc(uiK)

, xi0, x
i
1, . . . , x

i
K

(6)

Robots are expected to be synchronized in time, such that robot
i is at waypoint xik at timestep k. In between waypoints xik
and xik+1, we assume that robot i travels on the line segment
between xik and xik+1. We denote this line segment by `ik.

Our goal is to find discrete schedules pi, such that the
following properties hold:
P1: Each robot starts at its start vertex: ∀i : ui0 = vis.
P2: Each robot ends at a unique goal location:
∀i : xiK = v

φ(i)
g , where φ is a permutation of 1 . . . N .

P3: At each timestep, each robot either stays at its current
position or moves along an edge: ∀k, ∀i: uik = uik+1 or
(uik, u

i
k+1) ∈ EE .

P4: There are no robots occupying the same location at the
same time (vertex collision): ∀k,∀i 6= j: uik 6= ujk.

P5: There are no robots traversing the same edge in opposite
directions at the same time (edge collision): ∀k, ∀i 6= j:
uik 6= ujk+1 or ujk 6= uik+1.

P6: Robots obey inter-robot constraints when stationary (gen-
eralized vertex-vertex collision): ∀k,∀i 6= j: uik /∈
conV V (ujk).

P7: Robots obey inter-robot constraints while traversing an
edge (generalized edge-edge collision): ∀k, ∀i 6= j:
(uik, u

i
k+1) /∈ conEE((ujk, u

j
k+1)).

P8: Robots obey inter-robot constraints between stationary
and traversing robots (generalized edge-vertex collision):
∀k, ∀i 6= j, uik = uik+1: uik /∈ conEV ((ujk, u

j
k+1)).

In the labeled case the permutation φ(i) = i is given;
in the unlabeled case we are seeking φ(i) and the discrete
schedules pi simultaneously. A solution is optimal with respect

to makespan if K is minimal. A solution is optimal with
respect to cost if

∑
i pathcost(p

i) is minimal. The pathcost(·)
is a modular user-provided function, e.g. the total distance
traveled or the number of actions taken until the goal is
reached.

The first five properties are identical to typical MAPF
formulations. Properties 6–8 are newly considered constraints
in MAPF/C. In the following two theorems, we prove some
hardness results for MAPF/C. Theorem VI.2 shows that
makespan minimization for MAPF/C is hard even for the
unlabeled case. This is in contrast to the tractability result,
established using a reduction to the maximum-flow problem,
for makespan minimization for unlabeled MAPF [23].

Theorem VI.1. Solving labeled MAPF/C optimally with re-
spect to cost or makespan is NP-hard.

Proof. This follows directly from the NP-hardness proofs of
the same problems for labeled MAPF [24].

Theorem VI.2. Solving unlabeled MAPF/C optimally with
respect to makespan is NP-hard.

Proof. Given an undirected graph, an independent set in it is
defined as a collection of vertices such that no two of them are
connected by an edge. A maximum independent set (MIS) is
an independent set of maximum cardinality. Finding an MIS
in undirected graphs is a well-known NP-hard problem. It is
also NP-hard to decide whether the size of an MIS in graph
GMIS is greater than or equal to kMIS . We reduce this NP-
hard decision problem to the makespan minimization problem
for unlabeled MAPF/C.

For a given (GMIS , kMIS), we create a new graph
GMAPF/C that includes GMIS straddled between 2kMIS

additional vertices v1
s , . . . , v

kMIS
s and v1

g , . . . , v
kMIS
g . Each

additional vertex is connected to all vertices from GMIS . In
the corresponding MAPF/C instance, vis is interpreted as the
starting vertex of robot ri; and vig is interpreted as the goal
vertex of robot ri. The edges from GMIS are interpreted as
generalized vertex-vertex conflicts. The edges that connect the
additional vertices to vertices from GMIS are interpreted as
edges that robots can traverse in unit time. It is now easy to
see that all kMIS robots can go from their start vertices to
their goal vertices within the minimum makespan of 2 if and
only if the size of an MIS in GMIS is greater than or equal to
kMIS . An example is shown in Fig. 5. Therefore, if solving
MAPF/C optimally with respect to makespan can be done in
polynomial time, the decision version of the MIS problem
can also be solved in polynomial time. Conversely, since the
decision version of the MIS problem is NP-hard, makespan
minimization for unlabeled MAPF/C is also NP-hard.

Although this negative result is established for MAPF/C
on general graphs (and not on grids), it is relevant for us here
since the SPARS-based roadmaps on which MAPF/C instances
must be solved are more general graphs that do not resemble
grids.

IEEE TRANSACTIONS ON ROBOTICS 6

a

b

c

(a) GMIS

a
{b}

b
{a, c}

c
{b}

v1s

v2s

v1g

v2g

(b) GMAPF/C

Fig. 5. Example for MIS to unlabeled MAPF/C reduction with kMIS = 2.
The red sets define conV V (·) of nodes a, b, c. A solution for the MAPF/C
instance is shown with the bold edges, indicating that {a, c} is a maximum
independent set.

B. Unlabeled Planner

Given the value of K, the decision problem of finding an
unlabeled MAPF schedule with makespan K can be solved
in polynomial time. This can be achieved by reduction to a
maximum-flow problem in a larger graph, derived from GE ,
known as a time-expanded flow-graph [23]. This graph, de-
noted by GF , contains O(K · |VE |) vertices and is constructed
such that a flow in GF represents a solution to the MAPF in-
stance. This maximum-flow problem can also be expressed as
an Integer Linear Program (ILP) where each edge is modeled
as a binary variable indicating its flow and the objective is to
maximize the flow subject to conservation constraints [25]. An
ILP formulation allows us to add additional constraints for P6
– P8.

We build the time-expanded flow-graph GF = (VF , EF) as
an intermediate step to formulate the ILP. We describe the
approach briefly in this paragraph; more detailed discussions
are available in related work [23], [25], [26]. For each timestep
k and vertex v ∈ VE we add two vertices uvk and wvk to VF
and create an edge connecting them (red edges in Fig. 6(c)).
For each timestep k and edge (v1, v2) ∈ EE we create a
“gadget” connecting uv1

k , u
v2

k , w
v1

k , and wv2

k . As shown in
Fig 6(b), the “gadget” disallows agents to swap their positions
in one timestep, thus enforcing P5. Furthermore, we connect
consecutive timesteps with additional edges (wvk, u

v
k+1) (green

edges in Fig. 6(c)) to enforce P4. Additionally we add vertices
source and sink, which are connected to vertices {uv

i
s

0 : ∀i}
and {wv

i
g

K : ∀i} respectively. If a maximum flow is computed
on this graph, the flow describes a discrete schedule for each
robot, fulfilling P1–P5.

We now extend previous work by introducing annotations
con : EF 7→ 2EF to some of the edges such that con(e) is the
set of edges with which edge e has a generalized conflict with.
Consider vertices v, v′ ∈ VE that, if simultaneously occupied,
would violate P6. Those vertices map to helper edges ek =
(wvk, u

v
k+1) and e′k = (wv

′

k , u
v′

k+1) in GF for all k (green edges
in Fig. 6(c)). In that case we insert e′k into con(ek) and ek
into con(e′k) for all k. Similarly, consider (v1, v2) ∈ EE and
(v′1, v

′
2) ∈ EE that violate P7. These edges map to helper edges

ek and e′k in GF as part of the gadget for all k (blue edges in
Fig. 6(c)). As before we insert e′k into con(ek) and vice versa
for all k. For edge-vertex conflicts, consider (v1, v2) ∈ EE
and v′ ∈ VE that violate P8. The first edge (v1, v2) maps to
helper edges ek, while the vertex v′ corresponds to an agent

waiting at vertex v′, which requires the traversal of helper
edge e′k in GF (red edges in Fig. 6(c)). As before we insert
e′k into con(ek) and vice versa for all k. Finally, we disallow
that the blue edges of the “gadget” are used for wait actions
by adding constraints con((uv1

k , u
(v1,v2)
k)) = {(w(v1,v2)

k , wv1

k)}
and con((uv2

k , u
(v1,v2)
k)) = {(w(v1,v2)

k , wv2

k)}.
For each edge (u, v) ∈ EF , we introduce a binary variable

z(u,v). The ILP can be formulated as follows:

maximize
∑

(source,v)∈EF

z(source,v)

subject to
∑

(u,v)∈EF

z(u,v) =
∑

(v,w)∈EF

z(v,w) ∀v ∈ V ′F

ze +
∑

e′ ∈ con(e)

ze′ ≤ 1 ∀e ∈ EF

(7)

where V ′F = VF \{source, sink}. The first constraint enforces
flow conservation, and thus P3–P5. The second constraint
enforces P6–P8. P1 and P2 are implicitly enforced by con-
struction of the flow graph. A solution to the ILP assigns a
flow to each edge. We can then easily create the schedule pi

for each robot by setting xik based on the flow in GF . The
permutation φ(i) is implicitly given by xiK .

In order to find an optimal solution for an unknown K,
we use a two-step approach. First, we find a lower bound
for K by ignoring the generalized constraints. We search
the sequence K = 1, 2, 4, 8, . . . for a minimum feasible value
that is a power of 2, and then perform a binary search to
find the minimum feasible value LB(K). Because we ignore
the generalized constraints, we can check the feasibility in
polynomial time using the Edmonds-Karp algorithm on the
time-expanded flow-graph. Second, we execute a linear search
starting from LB(K), solving the fully constrained ILP. In
practice, we found that the lower bound LB(K) is sufficiently
close to the final K such that a linear search is faster compared
to another modified binary search using the ILP.

C. Labeled Planner

Two common approaches for solving labeled MAPF in-
stances are variants of M* [3] and Conflict-Based Search
(CBS) [27]. The core idea of M* is to plan for the robots
individually as much as possible. Whenever a conflict occurs,
the conflicting robots are joined together as a meta-agent.
In contrast, Conflict-Based Search methods try to resolve
conflicts one-by-one, starting with a conflict occurring at the
earliest timestep. In both methods, the search might grow ex-
ponentially in the worst case. Our labeled planner is based on
a bounded suboptimal variant of CBS, called Enhanced CBS
(ECBS), which has been shown to solve practical instances
with hundreds of robots in maze-like environments [28].

A detailed description, pseudocode, and an example of
(E)CBS are available in related work [28]. We give a brief
overview of the approach in the following. ECBS uses two
different search levels: high- and low-level. The high-level
search creates a binary constraint tree. Each node in that tree
has a set of constraints. A constraint either disallows a robot
to occupy a specific vertex or to traverse a specific edge at a

IEEE TRANSACTIONS ON ROBOTICS 7

as1

b

cg1

(a) GE

uv1k

uv2k

u
(v1,v2)
k w

(v1,v2)
k

wv1
k

wv2
k

(b) “Gadget” for flow-graph construction.

ua0

ub0

uc0

wa
0

wb
0

wc
0

ua1

ub1

uc1

wa
1

wb
1

wc
1

source

sink

(c) GF with K = 2.

Fig. 6. Example flow-graph (c) for environment shown in (a) with a single robot. The construction uses a graph “gadget” (b) for each edge in GE . The blue
edges are annotated with edge-edge and edge-vertex conflicts and the green edges are annotated with vertex-vertex conflicts. The bold arrows in (c) show the
maximum flow through the network, which can be used to compute the robots’ discrete schedules.

fixed timestep. A node also contains a discrete schedule pi for
each robot that is consistent with the set of constraints, and an
associated cost for the discrete schedules. The root node does
not have any constraints and thus the discrete schedules pi can
be created by finding the path with the lowest cost in the given
roadmap for each robot individually. If a node is valid (i.e.,
its discrete schedules pi are consistent with P1–P8), a solution
is found. Otherwise, the first violation of P1–P8 between two
robots ri and rj is found, and two new nodes are created. Both
children inherit the constraints from the parent node. The first
child imposes an additional constraint on ri and the second
node adds one additional constraint for rj . In CBS the nodes
are traversed using the best-first search strategy with respect
to the cost. The low-level search is used to compute a discrete
schedule for a single agent that satisfies the constraints for
that agent. Each time a new high-level node is created, the
low-level search needs to be executed just once for the agent
with the newly added constraint. The bounded suboptimality
in ECBS is achieved by using focal search1 with heuristics in
both levels.

ECBS can solve MAPF/C instances by using the generalized
conflict definition for both high-level and low-level focal
searches. The algorithm is identical to the one outlined in the
original paper [28], with the following adjustments. For the
high-level search, we now need to consider conflicts caused by
P6 – P8. In case the first conflict is a violation of P6 between
agents ri and rj at timestep k, we create two child nodes.
The first child adds a constraint for ri to avoid visiting xik at
timestep k. The second child adds a constraint for rj to avoid
visiting xjk at timestep k. Similarly, if the first conflict is a
violation of P7 between ri and rj , we add two child nodes with
the additional conflicts of ri not traversing (uik, u

i
k+1) and rj

not traversing (ujk, u
j
k+1), respectively. In case the first conflict

is a violation of P8 where, without loss of generality, ri is
waiting at a vertex and rj is traversing an edge, we add two
child nodes with the additional conflicts of ri not waiting at
uik at timestep k and rj not traversing (ujk, u

j
k+1), respectively.

Furthermore, we need to adjust the focal search heuristics to
count violations caused by P6 – P8 as well. For the high-level
focal search we use the number of pairs of robots that have
at least one conflict. For the low-level focal search we use the
total number of conflicts in the high-level search node.

1Focal search maintains two lists in an A* search framework: an open list
and a focal list. The focal list contains elements that are in the open list and
within a suboptimality factor of the minimum f -value. A node from the focal
list is chosen for expansion based on a secondary heuristic.

ECBS is bounded suboptimal with respect to the cost, i.e.,
for a user-provided suboptimality bound w, the cost of the
returned solution will satisfy∑

i

pathcost(pi) ≤ w
∑
i

pathcost(pi∗),

where pi∗ is a optimal solution as computed by CBS. The proof
in [28] holds for the ECBS/C as well.

D. Goal Assignment

ECBS can be used to solve an unlabeled problem approx-
imately, by finding a goal assignment first. In robotics, the
polynomial-time Hungarian method, which finds the optimal
assignment with respect to the sum of the costs, is frequently
used. This might, for example, correspond to minimizing the
total energy usage of the robots. However, in the unlabeled
case it is typical to minimize the makespan, i.e., the time until
the last robot reaches its goal. This goal assignment problem
is also known as the linear bottleneck assignment problem and
can also be solved efficiently using, for example, the Threshold
algorithm [29].

VII. TRAJECTORY OPTIMIZATION

In the continuous refinement stage, we convert the waypoint
sequences pi generated by the discrete planner into smooth
trajectories f i. We use the discrete plan to partition the free
space F such that each robot solves an independent smooth
trajectory optimization problem in a region that is guaranteed
to be collision-free. We assign a time tk = k∆t to each
discrete timestep, where ∆t is a user-specified parameter. This
is an initial guess for T = K∆t. The exact total time T is
computed in a post-processing stage such that all trajectories
meet given physical limits such as a maximum thrust constant.

A. Spatial Partition

The continuous refinement method begins by finding safe
corridors within the free space F for each robot. An example
from a real problem instance is shown in Fig. 7. The safe
corridor for robot ri is a sequence of convex polyhedra
Pik, k ∈ {1 . . .K}, such that, if each ri travels within Pik
during time interval [tk−1, tk], both robot-robot and robot-
obstacle collision avoidance are guaranteed. For robot ri in
timestep k, the safe polyhedron Pik is the intersection of:
• N − 1 half-spaces separating ri from rj for j 6= i;

IEEE TRANSACTIONS ON ROBOTICS 8

Fig. 7. Safe corridor for one robot over entire flight. Corridor polytopes are
colored by timestep. Black line: underlying discrete plan. Shaded tube: smooth
trajectory after first iteration of refinement. Highlighted in red: polytope,
discrete plan segment, and trajectory polynomial piece for a single timestep.

• Nobs half-spaces separating ri from O1 . . .ONobs
.

We separate ri from rj by finding a separating hyperplane
(α

(i,j)
k ∈ R3, β

(i,j)
k ∈ R) such that:

`ik ⊂ {x : α
(i,j)
k

T
x < β

(i,j)
k }

`jk ⊂ {x : α
(i,j)
k

T
x > β

(i,j)
k }.

(8)

While this hyperplane separates the line segments `ik and `jk,
it does not account for the robot ellipsoids. Without loss of
generality, suppose the hyperplanes are given in the normalized
form where ‖α(i,j)

k ‖2 = 1. We accommodate the ellipsoids
by shifting each hyperplane according to its normal vector,
resulting in the final trajectory constraint halfspaces:

α
(i,j)
k

T
f i(t) < β

(i,j)
k − ‖Eα(i,j)

k ‖2 ∀t ∈ [tk−1, tk]

α
(i,j)
k

T
f j(t) > β

(i,j)
k + ‖Eα(i,j)

k ‖2 ∀t ∈ [tk−1, tk]
(9)

where E = diag(rx, ry, rz) is the ellipsoid matrix. Robot-
obstacle separating hyperplanes are computed similarly, except
using a different ellipsoid Eobs for obstacles to model the fact
that downwash is only important for robot-robot interactions.

In our implementation, we require that obstacles Oi
are bounded convex polytopes described by vertex lists.
Line segments are also convex polytopes described by
vertex lists. Computing a separating hyperplane between
two disjoint convex polytopes Ψ = conv(ψ1 . . . ψmΨ

) and
Ω = conv(ω1 . . . ωmΩ), where conv denotes the convex hull,
can be posed as an instance of the hard-margin support vector
machine (SVM) problem [30]. However, the ellipsoid robot
shape alters the problem: for a separating hyperplane with
unit normal vector α, the minimal safe margin is 2‖Eα‖2.
Incorporating this constraint in the standard hard-margin SVM
formulation yields a slightly modified version of the typical
SVM quadratic program:

minimize αTE2α

subject to αTψi − β ≤ 1 for i ∈ 1 . . .mΨ

αTωi − β ≥ 1 for i ∈ 1 . . .mΩ

(10)

We solve a problem of this form for each robot-robot pair
and each robot-obstacle pair to yield the safe polyhedron Pik
in the form of a set of linear inequalities. Note that the safe
polyhedra need not be bounded and that Pik ∩ Pik+1 6= ∅ in
general. In fact, the overlap between consecutive Pik allows the
smooth trajectories to deviate significantly from the discrete
plans, which is an advantage when the discrete plan is far from
optimal.

B. Bézier Trajectory Basis

After computing safe corridors, we plan a smooth trajectory
f i(t) for each robot, contained within the robot’s safe corridor.
We represent these trajectories as piecewise polynomials with
one piece per time interval [tk, tk+1]. Piecewise polynomials
are widely used for trajectory planning: with an appropriate
choice of degree and number of pieces, they can represent
arbitrarily complex trajectories with an arbitrary number of
continuous derivatives.

We denote the kth piece of robot i’s piecewise polynomial
trajectory as f ik. We wish to constrain f ik to lie within the
safe polyhedron Pik. However, when working in the standard
monomial basis, i.e., when the decision variables are the ai in
the polynomial expression

p(t) = a0 + a1t+ a2t
2 + · · ·+ aDt

D,

bounding the polynomial inside a convex polyhedron is not a
convex constraint. Instead, we formulate trajectories as Bézier
curves. A degree-D Bézier curve is defined by a sequence of
D + 1 control points yi ∈ R3 and a fixed set of Bernstein
polynomials, such that

f(t) = b0,D(t)y0 + b1,D(t)y1 + · · ·+ bD,D(t)yD (11)

where each bi,D is a degree-D Bernstein polynomial with
coefficients2 given in [31]. The curve begins at y0 and ends
at yD. In between, it does not pass through the intervening
control points, but rather is guaranteed to lie in the convex
hull of all control points. Thus, when using Bézier control
points as decision variables instead of monomial coefficients,
constraining the control points to lie inside a safe polyhedron
guarantees that the resulting polynomial will also lie inside
the polyhedron. We define f i as a K-piece, degree-D Bézier
curve and denote the dth control point of f ik as yik,d. The degree
parameter D must be sufficiently high to ensure continuity at
the user-defined continuity level C.

C. Distributed Optimization Problem

The set of Bézier curves that lie within a given safe
corridor describes a family of feasible solutions to a single
robot’s planning problem. We select an optimal trajectory by
minimizing a weighted combination of the integrated squared
derivatives:

cost(f i) =

C∑
c=1

γc

∫ T

0

∥∥∥∥ dcdtc f i(t)
∥∥∥∥2

2

dt (12)

2The canonical Bernstein polynomials are defined over the time interval
[0, 1], but they are easily modified to span our desired time interval.

IEEE TRANSACTIONS ON ROBOTICS 9

where the γc ≥ 0 are user-chosen weights on the derivatives.
Our decision vector y consists of all control points for f i

concatenated together:

y =
[
yi1,0

T
. . . yi1,D

T
, . . . , yiK,0

T
. . . yiK,D

T
]T

(13)

The objective function (12) is a quadratic function of y, which
can be expressed in the form:

cost(f i) = yT (BTQB)y (14)

where B is a block-diagonal matrix transforming control
points into polynomial coefficients, and the formula for Q is
given in [32]. The start and goal position constraints, as well
as the continuity constraints between successive polynomial
pieces, can be expressed as linear equalities. Thus, we solve
the quadratic program:

minimize yT (BTQB)y

subject to yik,d ∈ Pik ∀ i, k, d
f i(0) = si, f i(T) = gφ(i)

f i continuous up to derivative C
dc

dtc
f i(t) = 0 ∀ c > 0, t ∈ {0, T}

(15)

It is important to note that there are N quadratic programs
which can be solved in parallel, allowing a distributed imple-
mentation where each robot receives the halfspace coefficients
of its safe corridor (9) and solves the quadratic program (15)
onboard. Computation of the spatial partition may also be
distributed with a 2× constant factor of redundant work.

The quadratic program (15) may not always have a solution
due to our conservative assumptions regarding velocity profiles
and the decoupling of robots using hyperplanes. In these cases,
we fall back on a solution that follows the discrete plan exactly,
coming to a complete stop at corners. Details of this solution
are given in [15].

The corridor-constrained Bézier formulation presents one
notable shortcoming: for a given safe polyhedron Pik, there
exist degree-D polynomials that lie inside the polyhedron but
cannot be expressed as a Bézier curve with control points
that are contained within Pik. Empirical exploration of Bézier
curves suggests that this problem is most significant when the
desired trajectory is near the faces of the polyhedron rather
than the center. Further research is needed to characterize this
issue more precisely.

D. Iterative Refinement

Solving (15) for each robot converts the discrete plan
into a set of smooth trajectories that are locally optimal
given the spatial decomposition. However, these trajectories
are not globally optimal. In our experiments, we found that
the smooth trajectories sometimes lie quite far away from
the original discrete plan. Motivated by this observation, we
implement an iterative refinement stage where we use the
smooth trajectories to define a new spatial decomposition, and
use the same optimization method to solve for a new set of
smooth trajectories.

For time interval k, we sample f ik at S evenly-spaced points
in time to generate a set of points Sik. The number of sample
points S is a user-specified parameter, set to S = 32 in our
experiments. We then compute the separating hyperplanes as
before, except we separate Sik from Sjk instead of `ik from
`jk. This problem is also a (slightly larger) ellipsoid-weighted
SVM instance. While the sample points Sik are not a complete
description of f ik, Sik is guaranteed to be linearly separable
from Sjk for i 6= j, because the polynomial pieces f ik, f

j
k lie

inside their respective disjoint polyhedra Pik,P
j
k .

These new safe corridors are roughly “centered” on the
smooth trajectories, rather than on the discrete plan. Intuitively,
iterative refinement provides a chance for the smooth trajec-
tories to further minimize the cost of the quadratic objective
(15) beyond that allowed by the constraints of the previous
spatial partition. Iterative refinement is similar in spirit to
sequential quadratic programming (SQP) [33] and sequential
convex programming (SCP) [34]. These methods find a local
minimum for a nonlinear, nonconvex optimization problem
by solving an iterative sequence of convex approximations.
Our method is not derived directly from such an underlying
problem but follows the same pattern of alternating between
updates on the approximated constraints and on the solution.
The max-margin spatial partition objective (10) is not directly
related to the primary energy minimization objective (14),
but updating the separating hyperplanes in a separate step,
allows us to decompose each iteration into N independent
subproblems for efficient and decentralized computation.

Iterative refinement can be classified as an anytime algo-
rithm. If a solution is needed quickly, the original set of f i can
be obtained in a few seconds. If the budget of computational
time is larger, iterative refinement can be repeated until the
quadratic program cost (14) converges.

E. Dynamic Limits

Unlike related work (e.g. [35]), we do not take dynamic
limits such as acceleration constraints into account during
optimization to avoid tight coupling of the robots in the
optimization. Instead, we leverage the fact that the discrete
planning stage already finds a synchronized solution for the
quadrotors and we scale all trajectories uniformly in a post-
processing step.

The user-supplied timestep duration ∆t directly affects the
magnitudes of dynamic quantities such as acceleration and

(a) (b)

Fig. 8. Illustration of discrete plan postprocessing. (a) In timestep k, robot
rj arrives at a graph vertex v and robot ri leaves v. The separating hyperplane
between `ik and `jk (with ellipsoid offset shaded in grey) prevents both robots
from planning a trajectory that passes through v. (b) Subdivision of discrete
plan ensures that this situation cannot occur.

IEEE TRANSACTIONS ON ROBOTICS 10

snap that are constrained by the robot’s actuation limits. We
use a binary search to find a uniform temporal scaling factor
such that no trajectory f i violates a dynamic constraint. For
quadrotors, as the temporal scaling goes to infinity, the actuator
commands are guaranteed to approach a hover state [17], so
kinodynamically feasible trajectories can always be found.

F. Discrete Postprocessing

If the FCL collision model is used, the discrete planner
might produce waypoints pi that require some postprocessing
to ensure that they satisfy the collision constraints (2) under
arbitrary velocity profiles. In particular, we must deal with the
case when one robot rj arrives at a vertex v ∈ VE in the
same timestep k that another robot ri leaves v. This situation
creates a conflict where neither robot’s smooth trajectory can
pass through v, as illustrated in Fig. 8. We ensure that this
situation cannot happen by dividing each discrete line segment
in half. In the subdivided discrete plan, at odd timesteps robots
exit a graph-vertex waypoint and arrive at a segment-midpoint
waypoint, while at even timesteps robots exit a segment-
midpoint waypoint and arrive at a graph-vertex waypoint.
Under this subdivision, the conflict cannot occur. However,
the increased number of timesteps requires more time to solve
the quadratic program (15).

In our experiments, we noticed that the continuous trajec-
tories typically experience peak acceleration in the vicinity
of t = 0 and t = T due to the requirement of accelerating
from and to a complete stop. We add an additional wait state
at the beginning and end of the discrete plans to reduce the
acceleration peak.

VIII. EXPERIMENTS

We implement the roadmap generation, conflict annotation,
and discrete planning in C++. We use FCL [22] for collision
checking, OMPL [36] for the SPARS roadmap generator,
OctoMap [37] for the environment data structure, Boost Graph
for maximum flow computation, and Gurobi 7.0 as ILP solver.
For the swept collision model we use a quadratic program
for collision checking. The continuous refinement stage is
implemented in Matlab.

We use the total number of actions as a cost metric in
ECBS, where move actions along an edge and wait actions
have uniform cost. Whenever we use ECBS for an unlabeled
planning problem, we use the Threshold algorithm to compute
the goal assignment first.

When computing the robot-obstacle separating hyperplanes
for each robot during each timestep, we limit the search space
to a box containing the path segment to reduce computation.
We expand the bounding box of the segment by 1 m to allow
the continuous plan to deviate from the discrete plan. We
consider only the nodes of the octree that intersect this box.

To compute separating hyperplanes for the safe corridors,
our method requires solving O(KN2 + KNobsN) small
ellipsoid-weighted SVM problems. For these problems, we use
the CVXGEN package [38] to generate C code optimized for
the exact quadratic program specification (10). The per-robot
trajectory optimization quadratic programs (15) are solved

using Matlab’s quadprog solver. Since these problems are
independent, this stage can take advantage of up to N ad-
ditional processor cores. In our experiments, we enforce
continuity up to the fourth derivative (C = 4) by using a
polynomial degree of D = 7. We evaluate our method in
simulation and on the Crazyswarm — a swarm of nano-
quadrotors [39].

A. Downwash Characterization

In order to determine the ellipsoid radii E, we executed sev-
eral flight experiments. For rz , we fly two Crazyflie quadrotors
directly on top of each other and record the average position
error of both quadrotors at 100 Hz for varying distances
between the quadrotors. We noticed that high controller gains
lead to very low position errors even in this case, but can cause
fatal crashes when the quadrotors are close. We determined
rz = 0.3 m to be a safe vertical distance. For the horizontal
direction, we use rx = ry = 0.12 m. We set Eobs to a sphere
of radius 0.15 m based on the size of the Crazyflie quadrotor.

B. Runtime Evaluation

We execute our implementation on a PC running Ubuntu
16.04, with a Xeon E5-2630 2.2 GHz CPU and 32 GB RAM.
This CPU has 10 physical cores, which improves the execution
runtime for the continuous portion significantly.

Each stage of our framework can be configured and the
choices influence the runtime and quality of results in the later
stages. We will first use one specific example and discuss the
variations at each stage. In later experiments we report the
results for one specific choice on different examples.

Our example “Wall32” uses 32 quadrotors, which begin in a
grid in the x−y plane, fly through a wall with three windows,
and form the letters “USC” in the air. For the roadmap, we
report the number of vertices and edges created, the desired
dispersion (droad) and the runtime to create the roadmap (trm).
For the conflict annotation we report the average number of
conflicting vertices per vertex (CVV), average number of con-
flicting edges per edge (CEE), average number of conflicting
vertices per edge (CEV), and runtime to annotate the roadmap
(tconf). For the MAPF/C solver we report the makespan of
the solution (K) and the runtime to find a solution (tdis),
including solving the assignment problem if ECBS is used for
an unlabeled instance. For the continuous trajectory planning
we report the runtime of six iterations (tcon) and the duration
of the trajectories (T).

Each stage might influence the results as follows, see Table I
for example results:
Mapping We use an occupancy grid representation of the

environment, stored in an octree. Larger leaf-nodes result
in a more compact data structure, but might be overly
pessimistic. On the other hand, smaller leaf-nodes require
more computation during the roadmap generation and
trajectory optimization stages. Row 2 shows an example
where a significantly higher number of leaf nodes has
no effect on the discrete side, but impacts computation
time on the continuous side due to the higher number of
hyperplanes that must be considered.

IEEE TRANSACTIONS ON ROBOTICS 11

TABLE I
INFLUENCE OF DIFFERENT PARAMETERS FOR “WALL32” PROBLEM INSTANCE, SEE SECTION VIII-B. BOLD ENTRIES INDICATE PARAMETERS CHANGED

COMPARED TO ROW 1. GRAY ENTRIES INDICATE RESULTS THAT ARE NOT EXPECTED TO CHANGE COMPARED TO ROW 1.

Row Mapping Roadmap Conflicts Discrete Continuous
docto nodes Method droad |VE | |EE | trm Method CVV CEE CEV tconf Method K tdis iter tcon T

1 0.1 17k Grid 0.5 978 3331 0.2 FCL 1.5 3.2 2.6 9.0 ECBS(1.5) 24 0.4 6 47 6.5
2 0.04 677k Grid 0.5 978 3331 0.2 FCL 1.5 3.2 2.6 9.0 ECBS(1.5) 24 0.4 6 380 6.5
3 0.1 17k SPARS 0.5 888 3495 36 FCL 0.8 7.5 1.7 9.6 ECBS(2.0) 30 1.5 6 56 11.5
4 0.1 17k Grid 0.2 13k 40k 1.5 FCL 15.9 11.9 24.0 1043 ECBS(1.5) 54 10 6 103 7.7
5 0.1 17k Grid 0.5 978 3331 0.2 Swept 1.5 26 2.6 0.6 ECBS(2.5) 36 1.4 6 29 8.5
6 0.1 17k Grid 0.5 978 3331 0.2 FCL 1.5 3.2 2.6 9.0 ILP 20 222 6 32 5.4
7 0.1 17k Grid 0.5 978 3331 0.2 FCL 1.5 3.2 2.6 9.0 ECBS(1.5) 24 0.4 2 17 9.5

TABLE II
RESULTS FOR DIFFERENT PROBLEM INSTANCES USING SPARS, ECBS AND THE SWEPT COLLISION MODEL, SEE SECTION VIII-B.

Roadmap Conflicts Discrete Continuous
Example labeled N Env. Size occupied |VE | |EE | trm CVV CEE CEV tconf K tdis t1(hp) t1(qp) tcon T

Flight Test No 32 9× 5.5× 2.2 4 % 873 3430 50 0.8 28 1.8 0.8 28 0.5 2.0 3.9 28 6.5
Wall32 No 32 7.5× 6.5× 2.5 6 % 921 3536 36 0.8 27.7 1.7 0.8 41 4.5 1.6 3.5 35 11.6
Maze50 No 50 10× 6.5× 2.5 30 % 1045 3221 82 1.1 24.2 2.2 0.7 48 4.4 7.3 12.3 133 16.3
Sort200 No 200 14.5× 14.5× 2.5 31 % 3047 7804 85 1.1 18.8 2.0 3.5 39 25 21 34 411 11.7
Swap50 Yes 50 7.5× 6.5× 2.5 6 % 869 3371 34 0.8 27 1.6 0.7 48 15 3.4 9.4 78 14.4

(a) Full 32-robot trajectory plan after six iterations of refinement.
The start and end positions are marked by squares and filled circles,
respectively.

(b) Picture of the final configuration after the test flight. A video is available
as supplemental material.

Fig. 9. Formation change example where quadrotors fly from a circle formation to a goal configuration spelling “USC” while avoiding obstacles.

Roadmap Generation A 6-neighbor grid is fast to compute
and results in fewer conflicts during the conflict anno-
tation stage, which in turn improves the performance
of solving the MAPF/C instance. However, such a grid
approach might miss narrow corridors entirely. A SPARS
generated roadmap takes longer to compute and results in
more conflicts due to its irregular shape, as shown in row
3. Furthermore, the non-uniform edge length might cause
the discrete solver to make worse scheduling decisions
because the distance traveled by each robot during a
single timestep varies widely. In row 3, this caused the
continuous solver to find trajectories which had to be
executed much more slowly to stay within the physical
limits of the quadrotor.
Lower dispersion creates denser roadmaps, which might
produce better results. However, the time for conflict
annotation and number of identified conflicts increase
significantly. Moreover, this results in MAPF/C instances
that are harder to solve in practice, see row 4.

Conflict Annotation Using the FCL collision checking
model (4) results in fewer edge conflicts on average
compared to the swept model, decreasing the MAPF/C
solving time, as shown in row 5. However, it requires

the continuous side to postprocess the discrete plan as
visualized in Fig. 8, resulting in larger solving times.
Moreover, we have seen various instances where the
FCL model results in infeasible quadratic programs for
the continuous stage, thus necessitating reversion to the
piecewise linear plan [15]. The FCL collision checking
model is slower compared to the swept model because it
is generically implemented, supporting a wide range of
possible collision models.

Discrete Solver The ILP-based solver can be used to
solve the unlabeled problem optimally with respect to
makespan. However, ILP takes significantly longer (see
row 6) and in cases of large makespans or high number
of conflicts might not find a solution in reasonable time
at all. ECBS is more versatile and computes bounded
suboptimal solutions very quickly. We noted that the sub-
optimality bound has a big impact on solution time with
a smaller impact on the resulting makespan. Therefore,
we used several different bounds, as noted in Table I.

Trajectory Optimization The number of refinement stages
affects the quality of the trajectories. In our experiments
six refinement iterations were sufficient for convergence
in all cases. If trajectories are used after fewer iterations,

IEEE TRANSACTIONS ON ROBOTICS 12

(a) 1 iteration (b) 2 iterations (c) 6 iterations

Fig. 10. Subset of results from Fig. 9 after different numbers of refinement iterations. Fine lines represent the discrete plans pi; heavy curves represent the
continuous trajectories f i. The remaining 28 robots are hidden for clarity. Increased smoothness and directness can be observed with more iterations.

1 2 3 4 5 6
iteration

0

1

2

3

4

5

6

m
a
x
 a

cc
e
le

ra
ti

o
n
 [

m
/s

2
]

1 2 3 4 5 6
iteration

0

0.5

1

1.5

2

m
a
x
 a

n
g

u
la

r
v
e
lo

ci
ty

 [
ra

d
/s

]

Fig. 11. Illustration of worst-case acceleration and angular velocity over
all robots during six iterative refinement cycles. Left: peak acceleration was
reduced from 6.1 to 1.6m/s2. Right: peak angular velocity was reduced from
2.4 to 0.2 rad/s.

the resulting time T tends to be larger because the
trajectories exhibit larger acceleration terms, see row 7.

In another set of experiments, we fix the parameters and
apply our method to different problem instances, see Table II.
We use a set of parameters such that we are able to find a
good solution quickly. However, tuning the parameters for
a particular problem might result in shorter times T at a
higher computational cost, as discussed before. We use a
leaf-node size of 0.1 m, the SPARS roadmap planner with
an average dispersion of 0.5 m, the swept collision model,
ECBS as discrete solver and six iterations of continuous
refinement. For ECBS we mostly used suboptimality bound
3.0 except for the labeled example (“Swap50”) where we used
a higher suboptimality bound of 4.0. We compute plans for five
different examples for 32 to 200 robots navigating in obstacle-
rich environments. The most significant time portion is the
roadmap generation, taking up to 85 s. Conflict annotation
and discrete solving can be done within 30 s. The continuous
refinement finds the first smooth plan in less than a minute.

C. Flight Test

We discuss the different steps of our approach on a concrete
task with 32 quadrotors. In this task, the quadrotors begin
on a disc in the x − y plane, fly through randomly placed
obstacles (e.g. boxes, bicycle, chair), and form the letters
“USC” in the air. We execute the experiment in a space which
is 10 m× 16 m× 2.5 m in size and equipped with a VICON
motion capture system with 24 cameras.

In an initial step we use a structured light depth
camera tracked by our motion capture system and the

octomap_mapping ROS stack to map the environment
using 0.1 m as octree resolution. We generate a roadmap
within a bounding box of 9 m× 5.5 m× 2.2 m using SPARS
in 50 s, generating 873 vertices and 3430 edges. The conflict
annotation and discrete planning take less than one second
combined, finding discrete schedules pi with K = 28. The
continuous planner needs six seconds to find the first set of
smooth trajectories and finishes six iterations of refinement
after 28 seconds.

Fig. 11 demonstrates the effect of iterative refinement on
the quadrotor dynamics required by the trajectories f i. For
each iteration, we take the maximum acceleration and angular
velocity over all robots for the duration of the trajectories.
Iterative refinement results in trajectories with significantly
smoother dynamics. This effect is also qualitatively visible
when plotting a subset of the trajectories, as shown in Fig. 10.
The final set of 32 trajectories is shown in Fig. 9(a).

We upload the planned trajectories to a swarm of Crazyflie
2.0 nano-quadrotors before takeoff, and use the Crazyswarm
infrastructure [39] to execute the trajectories. State estimation
and control run onboard the quadrotor, and the motion capture
system information is broadcasted to the UAVs for localiza-
tion. Figure 9(b) shows a snapshot of the execution when the
quadrotors reached their final state. The executed trajectories
can be visualized with long-exposure photography, as shown
in Fig. 1. The supplemental video shows the full trajectory
execution.

IX. CONCLUSION

We present a trajectory planning method for large robot
teams, combining the advantages of graph-based AI planners
and trajectory optimization. We validate our approach on a
real-world example of downwash-aware planning for quadro-
tor swarms.

Our approach creates plans where robots can safely fly in
close proximity to each other. We create the trajectories using
three stages: roadmap generation with inter-robot conflict
annotation, discrete planning, and continuous optimization.
The roadmap generation stage creates a sparse roadmap for
a single robot and can use any existing algorithm for that
purpose. We annotate the roadmap with generalized conflicts,
describing possible inter-robot dependencies which might be
violated if two robots are in close proximity to each other.
We can then formulate a MAPF/C instance and either solve

IEEE TRANSACTIONS ON ROBOTICS 13

it optimally with respect to makespan using an ILP-based
formulation, or solve it with bounded suboptimality using a
search-based method. The output is a discrete schedule that,
if executed, would require quadrotors to stop frequently. The
continuous optimization finds smooth trajectories for each
robot and is decoupled, allowing easy parallelization and
improving performance for large teams.

Our approach can compute safe and arbitrarily smooth
trajectories for hundreds of quadrotors in dense continuous
environments with obstacles in a few minutes. The trajectory
plan outputs have been tested and executed safely in numerous
trials on a team of 32 quadrotors, as well as in simulations of
up to 200 quadrotors.

In future work, we plan to apply our method to different
kinds of robots and heterogeneous robot teams. Moreover,
we plan to investigate methods to improve the performance
further, for example by generating roadmaps which are better
suited for multi-robot path planning. Finally, we are interested
in investigating how our method can be adapted for operating
in an online setting.

REFERENCES

[1] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme, “Downwash-
aware trajectory planning for large quadrotor teams,” in IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2017, pp. 250–257.

[2] S. M. LaValle, Planning algorithms. Cambridge Univ. Press, 2006.
[3] G. Wagner and H. Choset, “M*: A complete multirobot path planning

algorithm with performance bounds,” in IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), 2011, pp. 3260–3267.

[4] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[5] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in an
exponential haystack: Discrete RRT for exploration of implicit roadmaps
in multi-robot motion planning,” in Algorithmic Foundations of Robotics
XI. Springer, 2015, pp. 591–607.

[6] W. Hönig, T. K. S. Kumar, H. Ma, S. Koenig, and N. Ayanian,
“Formation change for robot groups in occluded environments,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2016,
pp. 4836–4842.

[7] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), 2012, pp. 1917–1922.

[8] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
IEEE Int. Conf. on Robotics and Automation (ICRA), 2012, pp. 477–
483.

[9] D. Morgan, S. Chung, and F. Y. Hadaegh, “Model predictive control of
swarms of spacecraft using sequential convex programming,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 6, pp. 1725–1740, 2014.

[10] Y. Chen, M. Cutler, and J. P. How, “Decoupled multiagent path planning
via incremental sequential convex programming,” in IEEE Int. Conf. on
Robotics and Automation (ICRA), 2015, pp. 5954–5961.

[11] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment
and trajectory planning for large teams of aerial robots,” in Robotics:
Science and Systems (RSS), 2013.

[12] J. Peng and S. Akella, “Coordinating multiple robots with kinodynamic
constraints along specified paths,” Int. Journal of Robotics Research
(IJRR), vol. 24, no. 4, pp. 295–310, 2005.

[13] D. Bareiss and J. van den Berg, “Reciprocal collision avoidance for
robots with linear dynamics using LQR-obstacles,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2013, pp. 3847–3853.

[14] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in Distributed Autonomous Robotic Systems (DARS),
2013, pp. 203–216.

[15] S. Tang and V. Kumar, “Safe and complete trajectory generation for
robot teams with higher-order dynamics,” in IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), 2016, pp. 1894–1901.

[16] M. E. Flores, “Real-time trajectory generation for constrained nonlinear
dynamical systems using non-uniform rational b-spline basis functions,”
Ph.D. dissertation, California Institute of Technology, 2007.

[17] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE Int. Conf. on Robotics and Automation
(ICRA), 2011, pp. 2520–2525.

[18] D. Yeo, E. Shrestha, D. A. Paley, and E. Atkins, “An empirical model
of rotorcraft UAV downwash model for disturbance localization and
avoidance,” in AIAA Atmospheric Flight Mechanics Conference, 2015.

[19] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP
multiple micro-UAV testbed,” IEEE Robotics & Automation Magazine,
vol. 17, no. 3, pp. 56–65, 2010.

[20] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptoti-
cally near-optimal motion planning,” Int. Journal of Robotics Research
(IJRR), vol. 33, no. 1, pp. 18–47, 2014.

[21] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. Journal of Robotics Research (IJRR), vol. 30,
no. 7, pp. 846–894, 2011.

[22] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for
collision and proximity queries,” in IEEE Int. Conf. on Robotics and
Automation (ICRA), 2012, pp. 3859–3866.

[23] J. Yu and S. M. LaValle, “Multi-agent path planning and network flow,”
in Workshop on the Algorithmic Foundations of Robotics (WAFR), 2012,
pp. 157–173.

[24] ——, “Structure and intractability of optimal multi-robot path planning
on graphs,” in AAAI Conference on Artificial Intelligence, 2013.

[25] ——, “Planning optimal paths for multiple robots on graphs,” in IEEE
Int. Conf. on Robotics and Automation (ICRA), 2013, pp. 3612–3617.

[26] H. Ma and S. Koenig, “Optimal target assignment and path finding for
teams of agents,” in Int. Conf. on Autonomous Agents & Multiagent
Systems (AAMAS), 2016, pp. 1144–1152.

[27] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent path finding,” in AAAI Conference on
Artificial Intelligence, 2012.

[28] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Symposium on Combinatorial Search (SOCS), 2014.

[29] R. E. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[30] S. R. Gunn, “Support vector machines for classification and regression,”
University of Southhampton, Tech. Rep., 1998.

[31] K. I. Joy, “Bernstein polynomials,” On-Line Geometric Modeling Notes,
vol. 13, 2000.

[32] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
quadrotor flight,” in IEEE Int. Conf. on Robotics and Automation (ICRA),
2013, pp. 649–666.

[33] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
numerica, vol. 4, pp. 1–51, 1995.

[34] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based
on interior point techniques for nonlinear programming,” Mathematical
Programming, vol. 89, no. 1, pp. 149–185, 2000.

[35] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for
aggressive quadrotor flight in dense indoor environments,” in Int. Sym-
posium of Robotic Research (ISRR), 2013, pp. 649–666.

[36] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–
82, December 2012, software available at http://ompl.kavrakilab.org.

[37] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013, software available at
http://octomap.github.com.

[38] J. Mattingley and S. Boyd, “CVXGEN: a code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp.
1–27, 2012.

[39] J. A. Preiss*, W. Hönig*, G. S. Sukhatme, and N. Ayanian,
“Crazyswarm: A large nano-quadcopter swarm,” in IEEE Int. Conf.
on Robotics and Automation (ICRA), 2017, pp. 3299–3304, software
available at https://github.com/USC-ACTLab/crazyswarm.

IEEE TRANSACTIONS ON ROBOTICS 14

Wolfgang Hönig is a Ph.D. student in the ACT Lab
at the University of Southern California. He holds
a Diploma in Computer Science from the Technical
University Dresden, Germany and an M.S. in Com-
puter Science (Intelligent Robotics) from USC. His
research focuses on enabling large teams of physical
robots to collaboratively solve real-world tasks by
combining methods from artificial intelligence and
robotics.

James A. Preiss received the B.S. in Mathematics
and B.A. in Photography from The Evergreen State
College (2010). He is currently pursuing a Ph.D.
in Computer Science at the University of Southern
California in Los Angeles. His research interests
include trajectory optimization, machine learning
for robot control, and multi-robot systems with an
emphasis on aerial robots.

T. K. Satish Kumar leads the Collaboratory for
Algorithmic Techniques and Artificial Intelligence
at USC’s Information Sciences Institute. He re-
ceived his PhD in Computer Science from Stanford
University in March 2005. His research interests
include constraint reasoning, probabilistic reasoning,
planning and scheduling, robotics, knowledge repre-
sentation, model-based reasoning, heuristic search,
algorithms and complexity, and approximation and
randomization techniques.

Gaurav S. Sukhatme is Professor of Computer
Science and Electrical Engineering and Gordon S.
Marshall Chair in Engineering at the Viterbi School
of Engineering at the University of Southern Califor-
nia (USC). He received his undergraduate education
at IIT Bombay in Computer Science and Engi-
neering, and M.S. and Ph.D. degrees in Computer
Science from USC. He is the co-director of the USC
Robotics Research Laboratory and the director of
the USC Robotic Embedded Systems Laborat ory
which he founded in 2000. His research interests

are in robot networks with applications to environmental monitoring. He
has published extensively in these and related areas. Sukhatme has served
as PI on numerous NSF, DARPA and NASA grants. He was a Co-PI on
the Center for Embedded Networked Sensing (CENS), an NSF Science and
Technology Center. He is a fellow of the IEEE and a recipient of the NSF
CAREER award and the Okawa foundation research award. He is one of the
founders of the Robotics: Science and Systems conference. He was program
chair of the 2008 IEEE International Conference on Robotics and Automation
and the 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. He is the Editor-in-Chief of Autonomous Robots and has served as
Associate Editor of the IEEE Transactions on Robotics and Automation, the
IEEE Transactions on Mobile Computing, and on the editorial board of IEEE
Pervasive Computing.

Nora Ayanian received the M.S. and Ph.D. degrees
in Mechanical Engineering and Applied Mechanics
from the University of Pennsylvania, in Philadelphia,
PA, USA, in 2008 and 2011, respectively.

Since 2013, she has been with the University
of Southern California, Los Angeles, CA, USA as
an Assistant Professor of Computer Science and
Andrew and Erna Viterbi Early Career Chair (2017-
present) and as a WiSE Gabilan Chair (2013-2017).
From 2011-2013, she was a Postdoctoral Associate
in the Computer Science and Artificial Intelligence

Laboratory at the Massachusetts Institute of Technology. Her research interests
include coordination and control for multi-robot systems that can be specified
with high-level inputs, with broad applications.

Prof. Ayanian is also a member of the American Society of Mechanical
Engineers and the Association for Computing Machinery. She is a co-chair
and co-founder of the IEEE Robotics and Automation Society Technical Com-
mittee on Multi-Robot Systems, and is Junior Chair of the 2017 International
Symposium on Multi-Robot and Multi-Agent Systems (MRS). She serves on
the editorial board of the Swarm Intelligence Journal. She is the recipient
of a 2016 National Science Foundation CAREER Award and 2016 Okawa
Foundation Research Award, and was named to the 2016 MIT Technology
Review 35 Innovators Under 35 (TR-35) and 2013 IEEE Intelligent Systems’
“AI’s 10 to Watch”. She received the 2016 Outstanding Paper in Robotics at
the International Conference on Automated Planning and Scheduling (ICAPS),
and 2008 Best Student Paper at the IEEE International Conference on Robotics
and Automation (ICRA).

