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Abstract— Path planning for multiple robots is well studied
in the AI and robotics communities. For a given discretized
environment, robots need to find collision-free paths to a set
of specified goal locations. Robots can be fully anonymous,
non-anonymous, or organized in groups. Although powerful
solvers for this abstract problem exist, they make simplify-
ing assumptions by ignoring kinematic constraints, making it
difficult to use the resulting plans on actual robots. In this
paper, we present a solution which takes kinematic constraints,
such as maximum velocities, into account, while guaranteeing
a user-specified minimum safety distance between robots. We
demonstrate our approach in simulation and on real robots in
2D and 3D environments.

I. INTRODUCTION

Path planning for multiple robots has many applica-
tions, including improving traffic at intersections, search and
rescue, formation control, warehouse management, airport
scheduling, and assembly planning. There are two existing
major approaches: The first one works in continuous envi-
ronments and can take kinematic constraints into account
but does not perform well in highly cluttered, puzzle-like
scenes, and the second one works in discrete environments
with artificial agents without motion constraints.

Hence, it is desirable to combine the two approaches by
providing a planner which can deal with highly cluttered,
puzzle-like scenes even under kinematic constraints. We
tackle this challenge by introducing a postprocessing step
that works on the output of a discrete solver. While the solver
itself is allowed to make simplifying assumptions in order to
run faster, our postprocessing step reinstates the adherence
to real-world kinematic constraints.

Solvers from the AI community for Multi-Agent Path-
Finding (MAPF) problems and Target-Allocation and Path-
Finding (TAPF) problems are able to solve instances with
hundreds of agents [1]. For the MAPF problem, each agent
has an assigned start- and goal location. The objective is to
find a set of synchronized paths, one path per agent, such
that each agent reaches its goal location without colliding
with other agents while minimizing the number of actions
required. Each agent can either move to an adjacent location
in one timestep or wait. The TAPF problem is a general-
ization in which the agents are partitioned into K groups.
A set of goal locations is assinged to each group. A solver
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(a) Example environment with two
robots. The lighter circles on the
right mark the goal locations.
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(b) Graph representation of the ex-
ample environment.

Fig. 1. Running TAPF example with 2 groups.

allocates a specific goal location to each agent and reports a
set of synchronized paths for all agents. If K = 1, all agents
are anonymous, and, if K equals the number of agents, TAPF
is the same as MAPF. Therefore, we will focus on TAPF in
the remainder of this paper.

Using a TAPF solution on real robots has several limita-
tions: (a) robots have kinematic constraints, such as max-
imum velocities and accelerations; and (b) the generated
solution’s timing is inflexible, necessitating costly replanning
when robots execute the solution imperfectly. A framework
that does not explicitly address faulty execution can cause
undesirable robot-robot collisions or repeated replanning. To
overcome these limitations while still being able to make
use of powerful solvers developed in the AI community,
we propose the use of a postprocessing step based on
the algorithmic framework of Simple Temporal Networks
(STNs).

II. TAPF

We are given an undirected graph G1 = (V1, E1)
and K multi-agent groups {group1, group2, . . . , groupK},
where groupi consists of Ki interchangeable robots
{ai1, ai2, . . . , aiKi

} for all i ∈ {1, 2, . . . ,K}. Each robot aij
has a unique start location sij ∈ V1, and the i-th group has a
set of unique target locations {gi1, gi2, . . . , giKi

}. A solution
to the TAPF problem finds K permutations, one for each
group, to uniquely assign a target location to each robot
and a collision-free path for each robot to navigate from its
start location to the assigned goal location. A more rigorous
mathematical description is given in [1].

The makespan is the total time until the last robot reached
its goal location. A solution is optimal if the makespan is
minimal. For the case of a single group, the problem can be
solved in polynomial time. However, in general, it is NP-
hard to approximate an optimal solution within any constant
factor less than 4/3 [2].

The Conflict-Based Min-Cost-Flow (CBM) algorithm uses
a hierarchical approach, where the lower level uses a max-
flow algorithm and the higher level uses a best-first search,
which tries to resolve conflicts as they occur [1]. It has been
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Fig. 2. Temporal plan graph with safety markers.

shown empirically that this method works well in warehouse
domains with dozens of teams and hundreds of agents.

An example of a TAPF instance is shown in Fig. 1. Here,
there are two groups, that each contain a single robot. The
robots are holonomic and move in a discretized environ-
ment. One optimal solution of the given TAPF problem is
〈A,B,C,D,E〉 for one robot and 〈B,C, F,C,D〉 for the
other robot.

III. STN

The output of the TAPF solver is a set of synchronized
paths, assuming that robots can traverse the unit-length edges
in unit time. We call the change of location of an agent event.
In order to include kinematic constraints, such as maximum
velocities of the different robots, we use a Temporal Plan
Graph (TPG). The TPG captures the partial order of the
events determined by the TAPF solver. More formally, the
TPG is an acyclic graph G2 = (V2, E2), where each vertex
v ∈ V2 represents an event and each edge 〈u, v〉 ∈ E2

indicates that u should be scheduled before v.
In the TAPF case, there are two kinds of temporal prece-

dences. First, the precedence which captures the location visit
order for each robot individually. Second, the TAPF solution
synchronizes the paths between robots to avoid conflicts.
This happens if robot 1 visits a location at timestep t1 and
robot 2 visits the same location at timestep t2 > t1.

Moreover, we can add safety markers as additional events
to ensure a minimum safety distance between robots at any
time. There are several methods to do so. An LP-solver can
be used to optimize for maximum throughput or minimum
makespan [3]. If the desired safety distance divides the edge
length, the problem can be solved with a user-specified edge-
length in strongly polynomial time by using a shortest path
algorithm [4]. One example of a TPG with safety markers is
shown in Fig. 2.

The TPG captures only the necessary partial order on
events. In order to include kinematic constraints such as
maximum velocities for robots or certain parts of the environ-
ment, we can extend it to a simple temporal network (STN).
An STN can be encoded as directed graph G3 = (V3, E3),
where V3 = {X0, X1, . . . , XN} and E3 are the sets of events
and edges, respectively. Each edge e = 〈Xi, Xj〉 ∈ E3 has
lower and upper bounds [LB(e), UB(e)], indicating that Xj

has to be scheduled between LB(e) and UB(e) time units
after Xi.

IV. EXPERIMENTS

We implement TAPF and MAPF solvers as well as various
variants of the STN framework in C++. For performance
evaluation, we randomly generate 10 × 10 × 5 maps with

Fig. 3. Examples of the experiments on robots. There are two groups
of four robots each trying to change formation in an environment with
obstacles.

varying numbers of robots, groups, and obstacles and mea-
sure how long the TAPF solver takes to find an optimal
solution. For example, a scenario with 150 obstacles and 100
robots in 5 groups can be solved in about 5 s on commodity
hardware. The time the STN requires to compute a solution
varies by method and desired safety distance. Interestingly,
its runtime is smaller in the common case of a large safety
distance, because fewer markers are required in that case.
In a warehouse-like domain with 100 robots, it takes 4 s to
compute a solution.

We verified our approach in simulation using the V-
REP robotics simulator for differential drive robots, 6-legged
robots, and quadcopters. Furthermore, we performed ex-
periments with up to 8 iRobot Create2 robots, verifying
that actual robots are actually able to follow the computed
trajectories. An example is shown in Fig. 3.

V. CONCLUSION

We presented an approach for using powerful solvers
from the AI community for multi-agent path finding on
actual robots, which obey kinematic constraints. Although
not shown here, our approach is optimal with respect to
the makespan under some conditions. We demonstrate the
applicability of our approach through simulation and on
actual robots. In the future, we would like to test our
framework on physical quadcopters and add an execution
monitoring framework which makes use of the “slack” of
the STN to avoid costly replanning in case of inaccurate
execution.
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