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Abstract— When tracking multiple targets with autonomous
cameras for 3D scene reconstruction, e.g., in sports, a significant
challenge is handling the unpredictable nature of the targets’
motion. Such a monitoring system must reposition according to
the targets’ movements and maintain satisfactory coverage of
the targets. We propose an approximate, centralized approach
for maximizing the visible boundary of dynamic targets using
mobile cameras in a bounded 2D environment. Targets and
obstacles translate, rotate, and deform independently, and
cameras are only aware of the current position and shape
of the targets and obstacles. Using current information, the
environment is searched for better viewing positions, then
cameras navigate to those positions while avoiding collisions
with targets and obstacles. We present a benchmark and metrics
to evaluate the performance of our method, and compare our
approach to a simple gradient-based local method in several
real-time simulations.

I. INTRODUCTION

Maximizing visual coverage of multiple targets is a neces-
sary component for accurate 3D reconstruction of the scene.
For example, one can use a team of drones to track a football
team to generate replay footage and individual feedback from
any angle, record military training missions for later review,
or document animals in the wild. The captured footage can
then be replayed in 3D in virtual reality from any angle,
to review plays, provide feedback for players or soldiers,
or to study articulation in animals. This requires covering a
sufficient portion of the boundary of the targets in order to
collect enough information for reconstruction.

Having a limited number of cameras, due to safety, cost,
or intrusiveness considerations, complicates the task. This
requires a monitoring system to reposition according to the
targets’ movements in order to acquire information about the
targets’ appearance. In such scenarios, there is often little
to no information about the targets’ intentions, making it
difficult or impossible to predict their motion. This makes
tracking and maintaining sufficient coverage of the boundary
of the targets a significant challenge.

In this work, we develop a method for covering the bound-
ary of dynamic targets in obstructed environments in 2D. As
an example, consider the target coverage problem in Fig. 1.
Here, two cameras, C1, C2, must cover two targets, T1, T2,
in an environment with an obstacle O1. Each camera’s angle
of view is limited and the goal is to achieve high coverage of
the targets, that is, maximize the visible boundary. Boundary
segments that are visible are marked in green. The targets
and obstacles may move or change shape over time, causing
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Fig. 1. Example scene bounded by B with two targets T = {T1, T2},
one obstacle O = {O1}, and two cameras C = {C1, C2} at a fixed time
step. The boundary of the targets ∂T is covered by a set of segments
S = {sl|1 ≤ l ≤ 8}. The segments are covered by the following
cameras: visibleBy(sl) = ∅ for l ∈ {1, 2, 3, 6}, visibleBy(s5) = {C1},
visibleBy(sl) = {C2} for l ∈ {4, 8}, and visibleBy(s7) = {C1, C2}.
The length of the green segments sum up to vis(S).

occlusions and changing the optimal observing locations.
Since we do not have any a priori knowledge about the path
targets and obstacles will take or how they will transform,
camera positions must be chosen based on the current state
of the environment. Different from previous work in multi-
target tracking, where each target is modeled as a point,
we purposely choose to model each target as a polygon.
Polygon-based modeling is key to our approach. Unlike
point-based methods, it allows covering the boundary of the
targets, which is necessary for future reconstruction of the
scene, and computing how much of the boundary is covered.

Although subproblems or variations thereof have been
addressed in both robotics and other fields, in this work
we present, to our knowledge, the first end-to-end algorithm
that approximately maximizes the coverage of dynamic
targets using mobile cameras in a 2D environment that
includes dynamic obstacles. More specifically, our novel
contributions are three-fold. First, we develop extensions
to existing algorithms that make them more suitable for
this problem, including computation of visible segments
and motion planning for visibility; second, we present an
integrated algorithm that approximately solves the dynamic
coverage maximization problem; and third, we propose a
benchmark and performance metrics to quantify our results
and possible future research on this task.

II. PROBLEM FORMULATION
Consider a team of M cameras C(t) = {Cj(t)|1 ≤ j ≤

M} which move within an environment containing obstacles
O(t) to maximize the coverage, i.e., the visible boundary, of
N independent targets T (t) = {Ti(t)|1 ≤ i ≤ N}. Each
camera has the pose pj = [xj , yj , γj ] ∈ SE(2) and fixed



field of view θ (half-angle), i.e. Cj(t) = (pj(t), θ), with
dynamics ṗj = uj . This simplified model can be realized
with camera-equipped ground robots or UAVs that move in
a fixed horizontal plane. The state of the environment at any
time t can be written as a tuple X(t) = (T (t),O(t)). Note
that all angles and angular operations are within [−π, π] in
this paper, unless specified otherwise. This work focuses on
constructing an algorithmic solution to the centralized, 2D
version of this problem.

The following notation is visualized in Fig. 1. We model
the targets T (t) and obstacles O(t) as time-varying polygons
without holes that translate, rotate, and/or deform. We make
the simplifying assumption that at any given time, the
instantaneous position and shape of targets and obstacles
and the pose of each camera are known (however, they are
not known in advance). In practice, this might be achieved
by explicit sensing (e.g., adding markers to the targets) or
implicit sensing using the obtained camera data in real-time.
Furthermore, we assume the environment is bounded by a
time-invariant simple polygon B, which contains all targets,
obstacles, and cameras at all times.

The boundary of all targets ∂T (t) can be tessellated into
line segments, such that each continuous segment is visible
by the same (possibly empty) set of cameras. We denote the
set of all such line segments as S(T (t),O(t), C(t)) (or for
short S(t)). We can also define the set of cameras that see
the entire line segment sl:

visibleBy(sl) = {Cj | sl is visible by camera Cj}. (1)

Section IV-B describes an efficient algorithm to simultane-
ously compute S and visibleBy(sl).

The visible surface length can be defined as:

vis(S(t))=
∑

sl∈S(t)

{
length(sl), visibleBy(sl) 6= ∅
0, otherwise

. (2)

We can now define coverage of the targets.
Definition 2.1: Coverage on the set of targets T (t) is the

ratio between visible surface length and target surface length:

coverage(T (t),O(t), C(t)) = vis(S(t))

length(∂T (t))
. (3)

The value of (3) falls between 0 (nothing of any target is
visible) and 1 (all targets are fully visible).

The average coverage over a period of time [t1, t2] can
then be defined as

1

t2 − t1

∫ t2

t1

coverage(T (t),O(t), C(t))dt. (4)

It is desirable to maximize the average coverage of the
targets over an infinite horizon.

Problem 2.2 (Static Coverage Maximization): For some
initial state C(t1), X(t1) = (T (t1),O(t1)), where T (t) ≡
T (t1),O(t) ≡ O(t1) (i.e., targets and obstacles are static),
find goal poses pj(t2), j ∈ {1, . . . ,M} and corresponding
trajectories pj(t), t1 ≤ t ≤ t2 such that the average coverage
(4) of the static targets is maximized as t2 →∞, subject to
the following constraints:

1) ‖ [xj1 yj1 ]
T−[xj2 yj2 ]

T ‖2≥δ j1, j2 ∈ {1, . . . ,M} j1 6=
j2, δ > 0 (no inter-camera collisions)

2) ‖ [xj1 yj1 ]
T − q‖2 ≥ δ j ∈ {1, . . . ,M}, q ∈ T ∪O (no

collisions between cameras and targets or obstacles)
3) ṗj = uj , ‖ [ẋj ẏj ]T ‖2 ≤ vmax

j , |γ̇j | ≤ γ̇max
j ,∀j ∈

{1, . . . ,M} (camera velocity is bounded)
For the static Problem 2.2, finding an optimal placement of
the cameras and a corresponding optimal trajectory is a well-
posed problem since the position of the targets and obstacles
are known and static. However, we are interested in covering
dynamic targets in an environment with dynamic obstacles.

Problem 2.3 (Dynamic Coverage Maximization):
Consider Problem 2.2 with dynamic, independent targets
that translate, rotate, and deform over time, such that
X(t) = (T (t),O(t)), T (t) 6≡ T (t1),O(t) 6≡ O(t1). For the
state X(t), t1 ≤ t ≤ t2, find the corresponding trajectories
pj(t) such that the average coverage (4) is maximized,
subject to the constraints defined in Problem 2.2.

Problem 2.3 is impossible to solve optimally since we have
no information about the future positions or shapes of the
targets. Thus (4) can not be optimized directly. However, (4)
can be used as a metric to measure performance afterward.
An additional practical consideration is the trade-off between
total coverage and quality of coverage. For example, covering
the target at long distances can increases coverage, but
decreases the number of camera pixels used in doing so.
Modeling this trade-off, however, is very application specific,
thus it is addressed in our solution but is not included in the
problem definition.

III. RELATED WORK

The static version of our problem is related to the Art
Gallery Problem, where, given a polygonal description of an
environment with holes, the goal is to find the lowest number
and position of guards such that the whole polygon is ob-
served. The Art Gallery Problem is known to be NP-hard [1],
but approximate solutions have been proposed. These include
an algorithm with time-complexity O(n5) with a guaranteed
optimality bound, where n is the number of edges of the
input polygon [2]; random sampling based methods with
probabilistic optimality bounds [3]; and distributed control
algorithms to steer robots to optimal positions [4]. However,
those solutions assume omni-directional cameras, which are
rarely used in practice, and static, not dynamic, scenes.

Cooperative Multi-Robot Observation of Multiple Moving
Targets (CMOMMT) is the problem of maximizing the total
number of visible targets for a given time window using
omni-directional cameras with limited range. CMOMMT
was first introduced by Parker and Emmons [5], and its many
extensions include a distributed version [6] and a solution
based on machine learning [7]. However, the problem as-
sumes targets as points rather than complex shapes and hence
does not optimize for overall coverage of the target objects
and does not consider occlusions at all.

Similar problems have also been studied in the field of
Wireless Sensor Networks. Ding et al. present a distributed
framework based on game theory to track moving targets



using pan-tilt-zoom cameras [8]. Extensions by Morye et
al. try to maximize the resolution without impacting track-
ing performance [9]. Yao et al. concentrate on optimizing
the handover between cameras for path-based object track-
ing [10]. Fiore et al. suggest a similar path-based approach
specifically for dynamic scenes [11] . While these solutions
can track dynamic targets, they specifically optimize for pan-
tilt-zoom cameras only and some of them do not specifically
take into account coverage, which is the primary objective
in this work.

Target trajectory prediction has been studied especially for
surveillance applications (e.g. [12]). Those solutions use past
observations of target locations to predict future movement,
and have been mainly evaluated for pedestrian movement.
However, in the use-cases we consider, little is known about
the targets beforehand, and their intentions are not known.
Thus, we do not expect predictable behavior and therefore
cannot incorporate such solutions. Furthermore, central to the
purpose of future scene reconstruction is the ability for the
targets and obstacles to vary in shape and orientation, which,
to our knowledge, is not included in any existing prediction
framework.

Specialized versions of the 3D coverage problem have
been researched as well. The notion of viewpoint entropy
was defined in [13], which can be used to find the N best
views of a scene, e.g., in CAD applications. While that is
similar to our formulation, it considers only static scenes and
does not take camera resolution into account. Schwager et
al. present a distributed solution to coverage with downward
facing cameras mounted on UAVs [14]. There, the goal is
to cover the inside of a given polygon in the plane from
above. In the present work, however, the cameras are in
the same plane as and try to maximize the visible boundary
area of a transforming set of targets in an environment with
transforming obstacles. This adds additional challenges such
as occlusions and complex motion planning to avoid those
occlusions, making these fundamentally different problems.

IV. PRELIMINARIES

Prior to approximately solving Problem 2.3, we must
determine the reward function to model the tradeoff between
resolution and coverage, and compute the visible boundary.

A. Reward Function

The reward function balances the trade-off between cov-
erage, camera resolution, and collision avoidance. For the
resolution, we define camera utilization as the number of
pixels used to view a target. Assume we have a line segment
sl with first endpoint s(1)l and second endpoint s(2)l that is
visible by Cj . The line segment and the position of the jth
camera form a triangle, where the angle opposite the segment
(∠s(1)l pjs

(2)
l ) defines the portion of the field of view which is

used to cover sl. Since the line segment is within the field of
view, the triangle must be a subset of the visibility polygon.
Assuming that all cameras have the same number of pixels,

we can compute a relative utilization measure:

utilization(T ,O, C)

=
1

M

∑
Cj∈C

∑
sl∈S

{
∠s(1)l pjs

(2)
l

2θ , Cj ∈ visibleBy(sl)

0, otherwise
.

(5)

The result will be between 0 (no pixel of any camera contains
parts of any target) to 1 (all pixels cover some target).

For collision avoidance, we use repulsion between the
different objects:

repulsion(T ,O, C) =
∑

O∈T ∪O

∑
Cj∈C

invdist(O,Cj)

+
∑

(Cj ,Ci)∈C×C
i<j

invdist(Ci, Cj)
(6)

with (a 6= b)

invdist(a, b) =

{
1

(dist(a,b))2
, dist(a, b) < d2

0, otherwise
. (7)

Here dist(a, b) returns the shortest Euclidean distance be-
tween different geometric objects a and b. We only consider
objects within a sensing radius d2 to limit the value of that
portion in magnitude.

Finally, the reward function is the weighted sum:

reward(T ,O, C) =λ1 coverage(T ,O, C)
+ λ2 utilization(T ,O, C)
− λ3 repulsion(T ,O, C)

(8)

The parameters λ1, λ2, λ3 ∈ R+ must be tuned to re-
flect the trade-off between the different components. Both
coverage(·) and utilization(·) compute values in [0, 1]. To
satisfy the collision constraints 1 and 2 in Problems 2.2 and
2.3, we analyze the boundary case of a single collision while
both coverage(·) and utilization(·) evaluate to 1. Assuming
that d2 ≥ δ we get

λ3 ≥ δ2(λ1 + λ2) (9)

as inequality which must hold to satisfy the constraints.

B. 2D Polygonal Visibility Computation

Each component of our solution requires computing the
set of segments S as well as the set of cameras that are able
to observe each segment (visibleBy(sl) ∀sl ∈ S) for the
set of targets T , obstacles O, and cameras C.

A naive approach would be to create a polygon with holes,
where B is the outer boundary and the targets/obstacles
form the holes, then compute the omni-directional visibility
polygon for each camera. Each visibility polygon can then
be intersected with the respective field-of-view triangle of
that camera to obtain directional visibility polygons. The
visible boundary surface is the intersection between the
target polygons and the union of all directional visibility
polygons.The complexity of this approach is limited by the
Boolean polygon operations, which can be done efficiently
in O((n + k) log n), where n is is the number of line
segments and k the number of intersections [15]. However,



implementation requires exact arithmetic, which slows the
computation in practice. Therefore, we propose an integrated
method to compute the visibility polygon, visible surface,
and invisible surface at the same time. The method is based
on the polar line sweep paradigm, such as used by Asano [16]
to compute visibility polygons.

Let us first consider the problem of computing the visi-
bility polygon for a single camera at pj with limited field
of view θ. Imagine we shoot rays originating from pj
to determine the visible edge in a certain direction. This
currently visible edge can only change at each vertex of
T , O, and B, therefore we call the vertices event points.
We create a list of all such event points using polar angles
between 0 and 2π with the horizontal axis being zero and the
origin at pj . We sort those event points by polar angles, and
traverse them in order. Furthermore, we keep a priority queue
of active edges, which are edges intersecting with the current
ray, sorted by distance to pj . Only the closest of these edges,
the current edge, is visible, but the other active edges might
become visible at a later point during the sweep. At each
event point, the queue is updated, and hence the currently
visible edge might change. The resulting visibility polygon is
simply the aggregation of all current edges during the angular
sweep. Refer to [16] for more details on the approach.

Our first extension addresses the limited field of view of
our cameras. We add two additional special event points,
where the angle is defined by the boundary of the field of
view of the camera. The visibility polygon is now defined
by pj itself, and the event points which were inside the field
of view. Note that a full angular sweep of 2π is still required
in order to keep track of the invisible segments as well.

Our second extension uses another intermediate step to
compute polar edges before the creation of the event point
list. This allows us to track where each event point was
created (boundary, obstacle, or target); we can use that
information to update the visible and invisible segments
during the sweep.

Finally, we can repeat this algorithm for each camera
sequentially. The pseudocode is shown in Algorithm 1.

Algorithm 1 2D Polygonal Visibility Computation
Input T ,O, C, B
Output S, visibleBy(sl) ∀sl ∈ S

1: segments ← createSegments(T ,O, B)
2: for j ← 1 to M do
3: polarEdges ← createPolarEdges(segments, pj )
4: eventPoints ← vertices(polarEdges) ∪{γj − θ, γj + θ}
5: sortAscendingByPolarAngle(eventPoints)
6: activeEdges ← emptyPriorityQueueByDistance()
7: for all eventPoint ∈ eventPoints do
8: if eventPoint is firstVertex then
9: activeEdges.add(eventPoint.edge)

10: else
11: activeEdges.remove(eventPoint.edge)
12: end if
13: if firstElementChanged(activeEdges) then
14: update(S)
15: update(visibleBy(·))
16: end if
17: end for
18: segments ← S
19: end for

In practice, many corner cases must be handled, such as
pj being on an edge or vertex. Furthermore, all compare
operations need to be done within an ε-boundary to avoid
numerical issues caused by the floating point representation.

The time complexity for one iteration is O(n log n), where
n is the number of segments [16] and therefore depends
on the number of obstacles and targets and their polygonal
complexity. We repeat the computation M times, however,
the number of the input segments n possibly grows in each
iteration (some segments might split into two segments).

V. ALGORITHM
While it is impossible to solve Problem 2.3 exactly since

future positions of the targets and obstacles are unknown, we
present an approximate solution that uses current information
about the state of the environment. A flowchart that details
the components of the solution, which we briefly describe
here and expand upon in the rest of this section, is shown
in Fig. 2. Initially, we execute global optimization to find
good camera poses based on the current state. If the global
optimizer suggests that a much higher reward than currently
achieved is possible (with some threshold percentage τ ),
then task assignment and motion planning are executed. The
former finds an assignment of goal positions such that the
estimated time traveled is minimized; the latter computes a
motion plan while avoiding obstacles for each camera. Next,
the motion plan is executed. Since the scene is dynamic,
however, we discuss how the plan can be adjusted during
execution. Finally, we refine the current camera poses by
executing local optimization but check periodically (every
T1 seconds) if the global optimization finds a better result.
This control strategy is repeated indefinitely.

A. Global Optimization
The first step in our solution is to compute a close-to-

optimal pose for all cameras given the position and shape
of the targets and obstacles. Since the underlying problem
is NP-hard, we use a heuristic solution based on sampling,
as described in [3]. The basic idea is to greedily and
incrementally position cameras (as if newly placing them in
the space) while ensuring that each new position will cover
target boundaries that are not yet covered.
Algorithm 2 Triple sample algorithm
Input T ,O, B,K, θ
Output C

1: invisibleSegments ← boundary(T )
2: for j ← 1 to M do
3: q1 ← sampleOnSegments(invisibleSegments)
4: bestReward = 0
5: for k ← 1 to K do
6: poly ← visibilityPolygon(T ,O, B, q1)
7: q2 ← sampleInPolygon(poly)
8: yaw ← sample(q2, q1, θ) . ensure q1 is visible from q2
9: pj ← (q2, yaw)

10: bestReward ← max(bestReward, reward(T ,O, C1, . . . , Cj ))
11: end for
12: pj ← arg(bestReward)
13: updateInvisibleSegments()
14: end for

Algorithm 2 describes the triple sample algorithm to find
a close-to-global optimum camera pose for a static scene.
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Fig. 2. Flowchart of the proposed algorithm. Local optimization is used continuously. In fixed time intervals, global optimization is performed and, if a
better result was obtained, task assignment and motion planning are used to move the cameras to their new pose.

Our approach is similar to [3], however, we have added
the use of a reward function to account for the trade-off
between coverage, resolution, and collisions (line 10) and a
third sampling step for the orientation of the camera (line 8).

Initially, the boundary of all targets is not covered by any
camera and thus the list of invisible segments initializes with
∂T . First, a point q1 is uniformly sampled on the invisible
segments. Next, the visibility polygon for an observer with
omni-directional vision located at q1 is computed. This
polygon marks the area where a camera could be located
at such that it observes q1. Then, a point q2 and an angle γ
is uniformly sampled within that polygon such that a camera
with pose [q2, γ] would observe q1. This sampling is repeated
K times, and the pose that maximizes the reward is chosen.
Finally, the list of invisible segments is updated and the entire
process is repeated for the next camera.

Note that sampling can be either uniform or use another
distribution if different parts of the target boundary are not
equally important (e.g., front vs. side coverage). Assuming
the number of samples per camera (K) is fixed, we can
compute an estimated solution in O(M ·n log n) time, since
the visibility polygon must be computed (O(n log n) [16])
M times.

B. Task Assignment

The result of the global optimization step is not ordered,
thus, any camera can be assigned to any goal location.
In order to find a good mapping between current camera
positions and the goal camera positions, we solve a stan-
dard task assignment problem by employing the Hungarian
method [17]. We use the estimated time required to travel
to the goal locations as the cost, since each robot has
different maximum velocities. When estimating time, we
ignore possible obstacles or targets on the way, since the
targets and obstacles are dynamic, thus calculated geodesic
distances or other shortest paths around those objects will
become inaccurate.

C. Motion Planning

Once locations are assigned to each camera, a motion plan
is necessary to move from the current positions such that
coverage during the motion plan execution is maximized. To
avoid high-dimensional state spaces, we consider the plan-
ning for each camera individually. Using standard algorithms
such as RRT* or PRM* [18], we can find a feasible path
while avoiding obstacles. We employ PRM* and make use
of its multi-query capability. Therefore, we need to build the
roadmap only once and can plan a feasible motion for all

cameras based on the same roadmap. This allows the motion
plan to be updated efficiently during execution so that we can
update the goal position using our local optimization strategy.

Since the default uniform sampling does not take visibility
into account, we adjust the sampling of states in a similar
fashion as in the algorithm for global optimization. In
particular, our motion planning sampler first samples a point
q1 on the boundary of any object, computes the visibility
polygon of that boundary point, and finally samples a valid
state for the camera within that polygon such that q1 is
visible (Lines 3, 6, 7, and 8 in Algorithm 2). Unfortunately,
this strategy would never sample any states in regions where
obstacles occlude all targets. Such states might be required
as intermediate steps for the motion plan. Hence, we sample
uniformly with a user-defined probability p and use our
custom sampler with probability 1− p.

We also use a custom cost function to optimize the path
itself according to our reward function. The cost to move
from pj1 to pj2 with pj1 , pj2 ∈ SE(2) can be computed as:

cost(pj1 , pj2) =
1

2

(
1

reward(T ,O, {(pj1 , θ)})

+
1

reward(T ,O, {(pj2 , θ)})

)
·
(∥∥∥∥[xj1yj1

]
−
[
xj2
yj2

]∥∥∥∥
2

+
1

2
(γj1 − γj2)

) (10)

Here the last product denotes the distance between states as
defined by OMPL and reward(·) is defined in section IV-A.
The idea is based on the StateCostIntegralObjective in
OMPL [19]. This helps to prefer states with higher rewards,
such as states where the camera is closer to the target objects.
In cases where the camera can only move slowly relative to
the target, it might be better not to employ this cost function,
as it tends to pick slightly longer routes and requires more
time for the computation.

We limit the amount of time for the planning stage to T2
seconds and, for collision avoidance, states which are closer
than d1 to any target or obstacle are considered invalid.

D. Execute and Update Motion Plan

The generated motion plan is for a given time, but the
target objects can move at any time. Hence, we need to react
dynamically to changes so that collisions are avoided. The
next intermediate goal is the farthest intermediate point on
the trajectory pj(t), such that it could be reached within the
simulated time-step moving at speed vmax

j if no obstacles
were present. For the translational component, we use arti-



ficial potentials [20], with the following force:

F = λ4Fa − λ5Fr (11)

where Fa is the 2-dimensional vector towards the next
intermediate goal (corresponding to the attractive force) and
Fr the vector towards obstacles in range weighted by their
distance, similar to (6) (corresponding to the repulsive force).
We move the camera following the negative gradient of
the potential field with the maximum velocity possible. The
rotational part is handled separately by moving towards the
specified yaw of the next intermediate goal, respecting γ̇max

j .
Motion is re-planned during execution based on the state

of the environment when the motion plan was first created.
This can be achieved online by using multi-query planners
such as PRM* [18]. In addition, goal positions are updated
using the local optimizer to ensure that once the goal of a
motion plan is reached, it is a current local optimum rather
than an optimum at the time when the initial motion plan
was created.

There are two cases where the motion plan execution
might not make forward progress. First, if the dynamic scene
changes so dramatically that the motion planner can not add
new goal or start states because there used to be an object
at the requested position. Second, if the repulsive force is in
the opposite direction of the attractive force. We detect both
cases and abort the execution if they continuously occur for
more than T3 seconds.

E. Local Optimization

Our approach uses gradient ascent [21] on the reward func-
tion to optimize locally. In order to comply with constraints 3
in Problems 2.2 and 2.3, we saturate the resulting output to
ensure the maximum translational and angular velocities are
not exceeded. Since computing visibility (Sec. IV-B) is not
an analytical approach, its gradient, and that of the reward
function, cannot be directly computed. Thus, the gradient of
the reward function is numerically approximated in a small ε
neighborhood. Discontinuities appear in the reward function
when segments become visible or invisible to the camera.
Thus, it is possible that a small step along the gradient may
result in a lower reward. To avoid this, only motions which
yield a higher reward are executed. Different gradient ascent
step sizes are used for translation (step size α) and rotation
(step size β).

VI. RESULTS

We demonstrate the applicability of our approach by
creating a set of 16 static and 16 dynamic scenes, to which
we compare results of our solution and a local optimization.
Additionally, we simulate moving targets as humans and
camera-equipped quadcopters using V-REP [22].

A. Test Scenes

As described in our problem formulation, our primary
objective is to maximize the visible boundary length. Hence,
a good metric to compare results is given by (4). However,
to quantify the variance of the results, the dynamic behavior

TABLE I
PARAMETERS USED FOR BENCHMARK

Reward Global Opt. Local Opt. Motion Pl. Art. Pot.
λ1 1.0 K 500 ε 10−6 p 0.1 λ4 1.0
λ2 0.2 T1 5 s α 0.5 T2 0.5 s λ5 1.0
λ3 1.0 τ 1.2 β 0.005 d1 1m T3 2 s
d2 2m

of the scene itself must be repeatable. To our knowledge, no
standard benchmark for the problem exists and therefore we
made an effort to create one.

We publish our test set containing 16 static and 16
dynamic scenes together with a visualization tool1, which
can be used in future research to further improve the method.
We describe a scene in 2D in a human-readable json-file.
The scenes differ significantly from each other in terms of
complexity and maximum speed of cameras, targets, and
obstacles. The number of cameras varies between one and
five, the targets between one and six, and we use up to two
obstacles. Much more complex scenes are possible as well.
A selection of dynamic example scenes is shown in Fig. 3.

B. Test Scene Simulations

We implement our algorithm using C++ and employ
boost geometry for low-level geometry computations such
as line intersections and OMPL for motion planning. We
run our proposed algorithm as well as local optimization
only on all test scenes. Both use the same parameters (see
Table I) and implementation and execute in real-time on the
same hardware (i7-4600U 2.1GHz, 12GB RAM). Each run
executes for 30 s and therefore simulates the same time-frame
of 30 s, and we collect the average coverage (as given by (4))
as well as the average camera utilization.

While the local optimization is deterministic, our algo-
rithm is not because the global optimization step uses random
sampling. Hence, we repeat the measurements 20 times and
report the variance as well as a Box-and-Whisker plot as
shown in Fig. 4. Note that numerical instabilities can create
variance even for the baseline, such as in dynamic7.

We achieve higher or comparable average coverage in
most cases compared to the baseline. In particular, Prob-
lem 2.2 is nearly perfectly solved because of the nature
of the algorithm: after some time, the global optimization
finds a close-to-optimal solution and the camera moves and
stays there. Problem 2.3 is much harder in the sense that the
optimum changes over time. While we execute the motion
plan (which can take some time if the optimum was found far
away), the optimal position changes continuously. Figure 5
shows how the coverage and utilization change over time
and sample configurations for the dynamic9 scene using
our method and local optimization. Because of the dynamic
behavior of the targets, the coverage changes over time in
both cases. However, in our case the motion planner causes
more jumps in the coverage and we maintain a higher average
coverage over time.

However, our algorithm shows lower coverage in some
cases as well. The camera is slower than the target in
dynamic1, thus our algorithm is spending too much time

1https://github.com/USC-ACTLab/coverage_scenes
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Fig. 3. Selection of dynamic test scenes used in the evaluation. The targets and obstacles are annotated with their velocities and the path is marked with
a blue line (if they are not static). Each camera is shown at its initial position annotated with its respective vmax, γ̇max, and initial angle of view.
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Fig. 4. Box-and-Whisker plot for the created test scenes for our proposed algorithm (orange) vs. local optimization (blue). Our algorithm achieves
significantly higher coverage in most cases. The rectangles mark 25 and 75 percentile respectively, outliers are shown using the “+”-symbol. If only our
method is visible (e.g. static7), both methods achieve the same results.
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(b) Utilization over time (c) Our method at 5 s (d) Local optimization at 5 s
Fig. 5. Results for dynamic9 using our algorithm vs. local optimization. Blue lines mark the planned trajectory. Our method outperforms the baseline
for both coverage and utilization.

executing the motion plan. In dynamic16, the global optimum
is only slightly better than the local optimum, and some
coverage is lost while trying to move to the global optimum.
Increasing τ here might help achieve the same results as a
pure local optimizer, but may also reduce the performance
in other test cases.

The supplemental video presents example runs of the fol-
lowing scenes: static11, static15, dynamic9, dynamic13,
and dynamic16.

Higher coverage has the disadvantage that the camera
utilization is often reduced. To achieve higher coverage, a
camera often needs to move farther away from the targets.
This behavior causes the camera utilization to drop, because

there are typically gaps between different targets. Neverthe-
less, the trade-off between the two properties can be adjusted
by changing the ratio between λ1 and λ2.

C. Simulation

We implement a test scene in the V-REP simulator using
quadcopters equipped with forward-facing cameras and vir-
tual humans which walk on a predefined path (not known to
the quadcopters) (cf. Fig. 6b). Since our problem description
is limited to 2D, the quadcopters fly at waist height. Because
our method requires polygonal targets, humans are modeled
as 2D rectangles of fixed size. Note that due to the polygonal
approximation, the coverage value presented is only an
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(a) Coverage over time (b) Screenshot of the V-REP simulation (c) Mapping to 2D scene
Fig. 6. The coverage over time for our V-REP simulation is shown in Fig. 6a. A screenshot and mapping to a 2D scene at t =25 s are shown in Fig. 6b
and Fig. 6c, respectively. The path of the simulated humans in Fig. 6b is unknown to the cameras. In Fig. 6c one polygon modeling the human in the red
shirt is magnified.

approximate value. Refer to the video for a sample run
of the simulation. Future extensions of our approach will
make it usable for 2.5D (fixed but different heights for the
quadrotors), or even full 3D.

VII. CONCLUSION AND FUTURE WORK

We present an efficient algorithm to maximize the cov-
erage of N dynamic targets in a dynamic 2D environment.
Our algorithm uses random sampling and achieves real-time
performance despite the difficulty of the problem. We also
present a newly developed benchmark containing 32 test
scenes together with performance metrics for evaluation,
and evaluate our approach with these scenes. We use that
benchmark to compare our solution with a local optimizer
and achieve higher average coverage in most cases.

In the future, we plan to extend our solution to the
3D version of the problem. While none of the presented
components is limited to 2D, in practice the underlying
computation of visible and invisible surface areas is complex
in the 3D case. Another direction is the development of a
decentralized solution. Local optimization, motion planning,
and artificial potentials can be executed in a decentralized
way, but the global optimization step is challenging. Simple
decentralization may cause cameras to be trapped in local
optima, which we tried to avoid explicitly. Predictive- or
learning-based methods might be helpful in specific target
tracking cases in order to improve both coverage and reso-
lution quality over longer time horizons. Finally, it would be
interesting to have regions of varying importance assigned
to the target boundaries, for example, to prioritize the front
of a football player.
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