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Abstract We consider the cooperative control of a team of robots to estimate the
position of a moving target using onboard sensing. In particular, we do not as-
sume that the robot positions are known, but estimate their positions using relative
onboard sensing. Our probabilistic localization and control method takes into ac-
count the motion and sensing capabilities of the individual robots to minimize the
expected future uncertainty of the target position. It reasons about multiple possi-
ble sensing topologies and incorporates an efficient topology switching technique
to generate locally optimal controls in polynomial time complexity. Simulations
show the performance of our approach and prove its flexibility to find suitable
sensing topologies depending on the limited sensing capabilities of the robots
and the movements of the target. Furthermore, we demonstrate the applicability
of our method in various experiments with single and multiple quadrotor robots
tracking a ground vehicle in an indoor environment.

Keywords: Cooperative multi-robot control; target tracking; sensor-based navi-
gation; sensing topology switching.

1 Introduction

Using multiple robots to track a moving target is potentially beneficial because of the
reduction in tracking uncertainty, increased coverage, and robustness to failure. Two
problems arise immediately. First, these objectives are often at odds (e.g., the configu-
ration of the robots that lead to the lowest uncertainty estimates of target pose may not
be the best if one or more robots is disabled). Second, the robots themselves are often
poorly localized (e.g., only a few may have access to GPS, and the rest may be limited to
a combination of onboard inertial sensing, visual odometry, and relative range/bearing
measurements to estimate their poses relative to each other).

As an example, consider the unmapped interior of a building shown in Fig. 1 where
moving targets needs to be tracked using multiple quadrotors. Some of the quadrotors
may have access to GPS (e.g., near external windows), the others do not, but can track
each other and the target. How should such a system coordinate its motion such that it
always maintains itself in a configuration that results in the least uncertainty in target
pose?
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Figure 1. A collaborative target tracking task in which the robots have to establish an appropriate
relative sensing topology to localize themselves and track one or multiple targets.

In the domain of cooperative control, small unmanned aerial vehicles (UAVs) have
recently become prominent and several well-constructed testbeds have been established
for multi-robot control and aerobatics with motion capture state estimates [12, 14, 20].
For cooperative target tracking with onboard sensors, many authors considered cen-
tralized [5, 6, 18], decentralized [1, 15, 17], and distributed [10, 11, 21] approaches
to multi-robot control in aerial and ground settings. However, these methods estimate
the pose of the target and assume that the poses of the robots are known, e.g., from an
external system or by reference to a global map. Ahmad and Lima [2] robustly track
a target taking into account the individual robot’s self-localization by weighting the
confidence of observations using their localization uncertainty. In contrast to our ap-
proach, they decouple the target tracking from the robot’s localization, which does not
account for the (usually high) correlation of the target’s and the robot’s position es-
timates. To robustly perform cooperative multi-robot localization using only onboard
sensors (such as with the popular Kalman filter [16]), several optimization-based lo-
calization approaches have been proposed [3, 7, 8]. However, the maximum-likelihood
state estimates provided by these approaches do not allow for direct minimization of
the uncertainty associated with the estimated target pose.

In this paper, we consider the cooperative control of a team of robots to estimate
the position of a target using onboard sensing. In particular, we assume limited sens-
ing capabilities, e.g., in terms of a limited field of view and range of each sensor. Our
(centralized) approach reasons over the entire sensing topology (comparable to [5]),
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without assuming that all robot poses can be extracted from offboard sensing. Instead,
the joint state of the robots and target are estimated explicitly using onboard sensing. In
such a setting, the poses of the robots influence visibility (which robots can see which
other robots and which robots can see the target) and measurement uncertainties. There-
fore reducing the uncertainty of the estimated target pose requires smart positioning of
robots to build up an appropriate chain of observations. Our centralized multi-robot
control approach reasons over the whole sensing topology when minimizing the uncer-
tainty of the estimated target position.

The key contributions of our approach are that (a) we consider onboard sensing and
switching from one sensing topology to another, (b) the approach is probabilistic and
takes into account motion and sensing capabilities and uncertainties, (c) the control is
locally optimal through local optimization that permits switches to neighbor topologies
and (d) the control approach has polynomial complexity in the number of robots.

We implemented and experimentally evaluated our approach in simulation and with
real quadrotor robots. Our approach proved to flexibly adapt the topology and controls
to the sensing limitation of the individual robots and the target movements. Experiments
with inexpensive AR.Drone quadrotors demonstrate the robustness of our approach to
substantial sensing and motion uncertainty, but also show the limitations arising from
the limited flight stability and field of view of these platforms.

2 Multi-robot Control with Topology Switching

2.1 Sensing Topologies

At each time step, the team of robots is in a certain topology with respect to sensing.
The topology usually results from the robots’ poses and the sensing capabilities of the
global sensor as well as of the individual robots observing each other and the target. In
general, the sensing capabilities can be limited by the range of the sensor, its restricted
field of view, or the available processing power that may only enable the detection of a
limited number of vehicles.

In our multi-robot control method, we efficiently organize robot topologies by ap-
plying a level-based topology approach. In such a sensing topology, each robot is as-
signed to a level, the global sensor (e.g., GPS) is in the highest level, and the target is in
the lowest level (see Fig. 2). Each sensor can potentially observe each robot/target on
the adjacent layer below it given that its capabilities allow the corresponding measure-
ments in the spacial configuration.

During target tracking, we allow switching between neighboring topologies. We
consider two sensing topologies as neighbors, if the team can transition between them
by just moving one robot by one level up or down (which can result in adding or re-
moving a level).

2.2 Extended Kalman Filter (EKF) State Estimation

We use the popular EKF [19] to efficiently and robustly estimate the joint pose of
all robots and the target from imprecise movements and noisy measurements similar
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to [13]. Given the pose x(i) of the individual robots and the pose x(t) of the target, we
define the joint state as

x = [x(1), . . . ,x(n),x(t)] . (1)

The EKF recursively fuses all measurements z1:k and controls u1:k up to time k. It
maintains the state posterior probability

p(xk | z1:k,u1:k) = N (µk, Σk) (2)

at time step k as a Gaussian with mean µk and covariance Σk. The stochastic motion
functions

x
(i)
k+1 = f (i)(x

(i)
k ,u

(i)
k ) + δ

(i)
k (3)

given the control command u and the white Gaussian noise δ of the individual robots
can be naturally combined in the joint state estimation [13]. The stochastic measurement
functions

z
(i,j)
k = h(i,j)(x(i),x(j)) + ε

(i,j)
k (4)

= h̃(i,j)(x) + ε
(i,j)
k (5)

can be naturally extended for the joint state [13]. Since the measurements are assumed
to be conditionally independent given the joint state [19], individual measurements can
be fused separately.

The motion and sensing functions, their Jacobians, and the noise covariances are
provided by the motion and sensor model of each entity, respectively. As a motion
function in general target tracking, one can apply a standard uncontrolled motion model,
e.g., a constant velocity motion model.

2.3 Optimization-based Control and Topology Switching

Our probabilistic method for cooperative target tracking aims at finding the joint con-
trols u = [u(1), . . . ,u(n)] that minimize the uncertainty about the target position. At a
time step k, we define the cost function

ck(u) =

h∑
i=1

γi tr(Σ′k+i) (6)

as a measure of the future target tracking uncertainty. It penalizes the uncertainty of the
state estimate of the target. We measure this uncertainty using the marginal covariance
of the target state Σ′, which is obtained as the corresponding block of the covariance Σ
of the joint EKF. Here, h is the lookahead horizon and 0 ≤ γ ≤ 1 is a discount factor.

We evaluate the a priori tracking covariances Σk+1, . . . , Σk+h by starting an EKF
instance from the current belief (µk, Σk). During these h EKF cycles, the constant joint
control u is applied and the availability and covariances of the individual measurements
are evaluated given the mean state µ.
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We finally formulate the selection of controls as an optimization problem

u?k = argmin
u

(ck(u) + ca(u)) (7)

with the proposed cost function. The additional cost ca accounts for the future distance
between the individual robots and results in a repelling force for explicit collision avoid-
ance. In our approach, we apply nonlinear optimization (e.g., [9]) to find the locally
optimal control for the current topology and all neighbor topologies. We then select the
topology and corresponding control that resulted in the lowest cost.

2.4 Complexity Analysis

The asymptotic complexity of our approach with n robots is determined as follows.
We evaluate O(n) neighbor sensing topologies, which reduces the computational com-
plexity from exponential (for all topologies) to real-time capable linear complexity. For
each considered topology, we assume that the optimization (e.g., gradient descent with
a constant number of iterations) runs O(n) evaluations of the cost function. Each eval-
uation of the cost functions involves h cycles of the EKF, which is O(n3), such that the
overall complexity of our approach is O(n5).

3 Simulation Experiments

3.1 Experimental Setup

We evaluated our approach on a number of simulations (see, for example, Fig. 2). We
consider a quadrotor and a target as points moving in 2D space, and we employ the
Kalman filter to estimate their [x, y]T positions. The setup also includes a global sensor
(called GPS), which is located at the origin [0, 0]. Omnidirectional 2D cameras with a
limited sensor range of 0.5 m provide relative positions of observed objects. We assume
that the measurement noise of the GPS and the cameras increases quadratically with the
distance from the center of view. The target is programmed to execute a trajectory that
starts at the origin and performs a figure eight.

3.2 Results and Insights

An example of the simulation results is shown in Fig. 2; a video is available online1.
While the controls selected by the approach were quite smooth, the zigzag movements
of the robots were due to the simulated motion noise. Each experiment started in one
of the simplest topologies, in which the robots were arranged as a string, each residing
on its own level. Our approach locally modified the topology during the first steps and
converged to a topology with two levels (Fig. 2, row 1). As the target moved away
from the GPS signal at the origin, the limited measurement range causes dropouts in
this topology (row 2) and our approach introduced an additional robot level (row 3).
Here, our approach exploited the currently low position uncertainty of all robots and

1 http://robotics.usc.edu/∼hausmankarol/videos/iser videos

http://robotics.usc.edu/~hausmankarol/videos/iser_videos
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Figure 2. Simulation results with 5 robots. Left: the current topology selected by our approach.
The links represent the actual measurements where the thickness of each link corresponds to the
information provided by the measurement (the inverse of the measurement standard deviation).
Right: The trajectory and the state estimates of the EKF. The actual trajectory is shown as thick
dots connected by a solid line. The EKF means are indicated by ‘+’ and the covariance is shown
for the current state.
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assigned three robots to the lowest level to get robust information on the target position.
As the target moved back towards the GPS, our approach switched back to the two-level
topology (row 4). Our approach similarly handled the left part of the trajectory, which
is not shown due to space constraints.

Further simulations with 2 to 30 robots and different sensor and motion models con-
firmed our assumption that the selected topologies substantially depend on the limita-
tions (here: the measurement range) of the sensor model. With unlimited measurement
range, the topology quickly converged to a locally optimal one and switching to dif-
ferent topologies only appeared as transient effects, even with simulated kidnapping of
robots and the target.

4 Real Robot Experiments

4.1 Experimental Setup

Microsoft Kinect Parrot AR.Drone

USB

Video
@60Hz

Odometry
@200Hz

Base Station

WiFi
Height

Control
@100Hz

Checkerboard pose estimation EKF Controller

Motion and sensor models

Video
@30Hz

XY-Control
@10Hz

Height
Stabilization

Motion Capture

Ethernet

Pose
@100Hz

Figure 3. The information flow in our real-robot target tracking experiments.

We tested the approach with Parrot AR.Drone quadrotor UAVs shown in Fig. 5. The
setup consists of a Microsoft Kinect sensor that was attached to the ceiling in approx.
3.4m height in an approx. 6× 5m2 room. One or two Parrot AR.Drone quadrotors get
observed by the camera at the ceiling and track a TurtleBot 2 robot that serves as a mov-
ing target. The AR.Drones are equipped with an inertial measurement unit (IMU), an
ultrasound altimeter, two cameras, and WiFi communication. The down-looking cam-
era is used internally to estimate the visual odometry, which is fused with the IMU
information of the quadrotor. We modified the forward-looking camera to be tilted 45◦
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Figure 4. The AR.Drones are equipped with a checkerboard and Vicon markers for relative sens-
ing and ground truth poses, respectively. The forward-looking camera is tilted 45◦ downwards
(highlighted by a red circle) to track the target and robots on lower levels of the sensing topology.

downwards to track the target on the ground (see Fig. 4). The target and the quadrotor
were both equipped with visual markers for relative pose estimates. In our initial exper-
iments, we used ARToolKit markers [4], which were detected with frequent outliers.
The checkerboard markers, we use in our current system, were detected using OpenCV
with only occasional outliers and less noise. We use checkerboards with varying num-
ber of rows and columns to distinguish between the robots and the target. A detailed
graph of the information flow of our system is shown in Fig. 3.

The Kinect camera and the UAV front camera images provide 3D relative poses of
observed markers. For operational simplicity, in our EKF implementation we consider
the planar state pose [x, y, ψ]T (all measurements and the corresponding covariances
are projected onto the XY-plane). Moreover, we estimate the position of the target as
[x, y]T . We send velocity control commands [vx, vy, ωψ]

T to each quadrotor, which
are then internally converted to appropriate motor velocities given the IMU and visual
odometry information.

4.2 Calibration and Covariance Estimation

Odometry The visual odometry is internally fused with IMU data and provides hor-
izontal velocity measurements. This estimation system is factory-calibrated and does
not require further calibration. We determine the covariance of the horizontal veloc-
ity measurement uncertainty using the ground truth motion that is extracted from the
Vicon data. The covariance of the visual odometry follows from straightforward error
statistics.

Marker Sensor The visual detection and pose estimation of checkerboard markers
requires a careful intrinsic and extrinsic camera calibration. For the intrinsic calibra-
tion, we use the ROS camera calibration package, which is based on OpenCV. In our
extrinsic calibration procedure, we estimate the camera pose with respect to the robot
base. We collect a series of marker pose measurements of a checkerboard marker that is
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Figure 5. Experimental setup: the Microsoft Kinect camera is mounted on the ceiling and ob-
serves the Parrot AR.Drones. A TurtleBot 2 serves as a moving target that is tracked by the
AR.Drones. The AR.Drones and the target are equipped with checkerboard markers. The state
estimates are shown as blue arrows, the corresponding covariances are represented by blue el-
lipses. The commanded velocities are shown as orange arrows. Top: two AR.Drones tracking the
target in a string topology. Bottom: two AR.Drones tracking the target in a flat topology.
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equipped with additional Vicon markers. Using the ground truth poses of the robot base
and the checkerboard, we can determine the relative 3D camera orientation in a least-
squares minimization routine of the measurement errors. Since the camera position can
be measured accurately, we only determine its orientation from recorded data. Further-
more, we determine the pose of the camera at the ceiling using a large checkerboard
with additional Vicon markers on the floor.

In the second step, we use the same type of recorded data as for the extrinsic calibra-
tion to statistically determine the 3D position and orientation covariance of the marker
pose measurements.

4.3 Height Stabilization

While the ultrasound altimeter provides accurate and reliable height measurement in
single-robot experiments, the ultrasound sensors suffer from substantial crosstalk in
multi-robot settings. This results in frequent measurement outliers that confuses the in-
ternal height estimation and stabilization of the AR.Drone and can cause serious crashes
due to unpredictable height control behaviors.

A natural solution to this problem would be to take ultrasound measurements in an
interleaved way. Since the AR.Drone low-level software is not open-source, we decided
to implement a workaround using Vicon height estimates. In particular, we use a PD
controller for determining vertical velocity commands to keep the robots at their desired
height.

4.4 Results

We conducted a series of real robot experiments as a proof of concept of our approach;
the videos are available online2. We started each experiment by controlling the robot
manually. During all multi-robot experiments, the height stabilization controller was
enabled. Once the EKF was initialized, the cooperative target tracking controller was
turned on and took over control. We evaluated the performance of our method using
Vicon ground truth poses recorded throughout the experiment (see Fig. 6).

Insights and Limitations During the practical evaluation we encountered several chal-
lenges – the prodigal gap between the simulations and reality. First, the system is highly
influenced by the small field of view of the cameras, which results in tracking loss if an
aggressive control command is executed. Second, the information about roll and pitch
of the quadrotor received from the AR.Drone has a significant influence on the mea-
surement projection. It introduces additional uncertainty in the EKF, which we account
for in a first-order error propagation in the measurement projection.

Single-robot Experiment In a first experiment, we deployed a single robot to track a
moving target. Although the target was moving extensively in all directions, the robot
was able to behave stably (see the top row of Fig. 6). The robot stayed below the global

2 http://robotics.usc.edu/∼hausmankarol/videos/iser videos

http://robotics.usc.edu/~hausmankarol/videos/iser_videos
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Figure 6. Row (a) shows the results of an experiment with one robot tracking a moving target.
Row (b) and (c) show target tracking of two robots (node 1 and node 2) in the flat and string
sensing topology, respectively. Left: The error of the EKF position estimates and the trace of the
EKF covariances of the individual robots and the target for the full trajectory. Right: An extract
of the trajectory and the state estimates of the EKF. The actual trajectory is shown as thick dots
connected by a solid line. The EKF means are indicated by ‘+’ and the covariances are shown as
ellipses.



12 Hausman, Müller, Hariharan, Ayanian, and Sukhatme

camera, which resulted in high certainty of its position and it mostly changed its orien-
tation such that its field of view followed the target. In this experiment we obtained the
smallest position errors of the target and the robot.

Two-robot Experiment in Flat Topology The next experiment was performed with
two robots in a flat topology (arranged on the same level) and a moving target. In this
case node 2 started without having the target in its field of view. After the target was
localized by node 1, node 2 was able to change its orientation to join tracking the target.
One can notice higher uncertainty in the pose estimation of node 2 (see the middle row
in Fig. 6), which was mainly caused by the small field of view of the global camera.
In order to avoid collisions between two robots the repelling force was introduced,
however, it frequently pushed node 2 out of the global camera view causing higher
uncertainty in its position estimates.

Two-robot Experiment in String Topology The last experiment consisted of two
robots in a string topology (one above the other) and a moving target. One can notice
two peaks in the target position error (see the bottom row of Fig. 6) that correspond to
the situation where the lower robot was pushed down by the air stream of the higher
robot. Since the motors of the AR.Drones do not provide enough torque to compensate
for strong air streams, the lower robot was substantially less stable. It is also worth
noticing that although the target was lost, the system was able to recover and continue
tracking.

5 Conclusions

We presented a probabilistic multi-robot control approach that considers onboard sens-
ing and topology switching for target tracking. Our method generates locally optimal
control while keeping polynomial complexity. We evaluated our approach in a number
of simulations and showed a proof of concept with the real robot experiments. Our ap-
proach proved to flexibly adapt the topology and controls to the sensing limitations of
the individual robots and the target movements. We presented the results of two topolo-
gies (flat and string) consisting of two AR.Drones, which demonstrated the robustness
to the limited hardware capabilities of these inexpensive platforms. The scalability of
the approach crucially hinges on our ability to quickly search the space of sensing
topologies. At present, we restrict this search using a neighbor topology heuristic. In
the future, we plan to use our method on a more capable platform and further explore
principled topology switching techniques that preserve scalability.
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[7] A. Howard, M.J. Matarić, and G.S. Sukhatme. Localization for mobile robot teams using
maximum likelihood estimation. In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), volume 1, pages 434–439, 2002.

[8] G. Huang, R. Truax, M. Kaess, and J.J. Leonard. Unscented iSAM: A consistent incre-
mental solution to cooperative localization and target tracking. In Proc. of the European
Conf. on Mobile Robots (ECMR), 2013.

[9] S.G. Johnson. The NLopt nonlinear-optimization package. URL http://ab-initio.mit.edu/
nlopt.

[10] B. Jung and G.S. Sukhatme. Tracking targets using multiple robots: The effect of environ-
ment occlusion. Autonomous Robots, 13(3):191–205, 2002.

[11] B. Jung and G.S. Sukhatme. Cooperative multi-robot target tracking. In Distributed Au-
tonomous Robotic Systems 7, pages 81–90. Springer, 2006.

[12] S. Lupashin, A. Schollig, M. Sherback, and R. D’Andrea. A simple learning strategy for
high-speed quadrocopter multi-flips. In Proc. of the IEEE Int. Conf. on Robotics & Automa-
tion (ICRA), 2010.

[13] A. Martinelli, F. Pont, and R. Siegwart. Multi-robot localization using relative observations.
In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2005.

[14] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar. The GRASP multiple micro-UAV
testbed. IEEE Robotics & Automation Magazine, 17(3):56–65, 2010.

[15] R. Mottaghi and R. Vaughan. An integrated particle filter and potential field method for
cooperative robot target tracking. In Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA), 2006.

[16] A.I. Mourikis and S.I. Roumeliotis. Performance analysis of multirobot cooperative local-
ization. IEEE Transactions on Robotics and Automation, 22(4):666–681, 2006.

[17] L-L. Ong, B. Upcroft, T. Bailey, M. Ridley, S. Sukkarieh, and H. Durrant-Whyte. A decen-
tralised particle filtering algorithm for multi-target tracking across multiple flight vehicles.
In Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

[18] E. Stump, V. Kumar, B. Grocholsky, and P.M. Shiroma. Control for localization of targets
using range-only sensors. Int. Journal of Robotics Research, 28(6):743–757, 2009.

[19] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, 2005.

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt


14 Hausman, Müller, Hariharan, Ayanian, and Sukhatme

[20] M. Valenti, B. Bethke, G. Fiore, J.P. How, and E. Feron. Indoor multi-vehicle flight testbed
for fault detection, isolation, and recovery. In Proceedings of the AIAA Guidance, Naviga-
tion, and Control Conference and Exhibit, 2006.

[21] Z. Wang and D. Gu. Cooperative target tracking control of multiple robots. IEEE Transac-
tions on Industrial Electronics, 59(8):3232–3240, 2012.


	TODO
	Introduction
	Multi-robot Control with Topology Switching
	Sensing Topologies
	Extended Kalman Filter (EKF) State Estimation
	Optimization-based Control and Topology Switching
	Complexity Analysis

	Simulation Experiments
	Experimental Setup
	Results and Insights

	Real Robot Experiments
	Experimental Setup
	Calibration and Covariance Estimation
	Odometry
	Marker Sensor

	Height Stabilization
	Results
	Insights and Limitations
	Single-robot Experiment
	Two-robot Experiment in Flat Topology
	Two-robot Experiment in String Topology


	Conclusions


