
Trajectory Planning for Heterogeneous Robot Teams

Mark Debord, Wolfgang Hönig, and Nora Ayanian

Abstract— We describe a trajectory planning method for
heterogeneous mobile robot teams in known environments. We
consider two core problems that arise with heterogeneous robot
teams: asymmetric inter-robot collision constraints and varying
dynamic limits. Asymmetric collision constraints are important
for close-proximity flight of rotorcraft due to the downwash
effect, which complicates spatial coordination. Varying dynamic
limits complicate temporal coordination between robots and
must be taken into account during planning. Our method
builds upon a hybrid planner that combines graph-planning
techniques with trajectory optimization and scales well to large
homogeneous robot teams. We extend the hybrid planning
approach to include the additional spatial and temporal coordi-
nation to support heterogeneous teams. Our method scales well
with the number of robots and robot types and we demonstrate
our approach on a team of 15 physical robots of 4 different
types, including quadrotors and differential drive robots.

I. INTRODUCTION

Trajectory planning for heterogeneous teams of robots is a
core problem for many potential applications of multi-robot
systems. To accomplish complex tasks, it could be beneficial
for a team to be composed of different types of robots with
varied capabilities. This complicates trajectory planning due
to differing dynamics and mixed requirements for allowable
interactions between robots. For example, downwash from
rotorcraft is an effect that other nearby rotorcraft must
consider in order to maintain stable flight, but ground robots
are not necessarily affected by downwash. Figure 1 shows an
example of a physical experiment in which many quadrotors
of different sizes must fly in close proximity and thus be
aware of other quadrotors’ downwash while also considering
the motion of ground robots.

In this work, we extend downwash-aware trajectory plan-
ning for large quadrotor teams [1] to heterogeneous teams of
robots. The proposed method is centralized and is designed
for a priori calculation of trajectories in known environ-
ments. The high-level structure of the original approach is
retained. First, a graph-based planning method is used to
compute a collision-free discretized schedule for all robots
in the team. Then, a second parallelizable optimization stage
refines these schedules into locally optimal smooth trajec-
tories. Our extension introduces the capability of utilizing
independent and asymmetric collision constraints between
different pairs of robot types. Additionally, it generates
trajectories that obey the dynamic limits of all robots types
in the team while retaining temporal alignment. Like the
original method, the one presented here scales well to teams

All authors are with the Department of Computer Science, University of
Southern California, Los Angeles, CA, USA.

Email: {mjdebord, whoenig, ayanian}@usc.edu
This work was supported by ONR N00014-14-1-0734.

Fig. 1. Heterogeneous robot team with ten small UAVs (blue, only eight
visible), two medium UAVs (red), one large UAV (green), and two ground
robots (yellow). The robots have to navigate through a cluttered environ-
ment, avoiding obstacles and taking asymmetric inter-robot constraints into
account.

with large numbers of robots, with additional processing time
mostly due to offline roadmap generation.

II. RELATED WORK

Homogeneous multi-robot motion planning problems have
been addressed using a variety of approaches in the past,
including graph-based and optimization-based methods. If
the problem specification can be discretized into a graph,
a discrete solution can be found with search-based algo-
rithms [2]. Such algorithms can find solutions for hundreds of
robots quickly, but ignore kinodynamic constraints. Another
approach is creating a large optimization problem in the
joint space of all robots [3]. Such formulations might include
kinodynamic constraints, but do not scale very well to large
robot teams. We extend an approach that combines graph-
based search with trajectory optimization [1], [4]. This hybrid
planning method works well with hundreds of homogeneous
robots, considers kinodynamic constraints, and can take
inter-robot constraints into account.

Motion planning for heterogeneous robots can employ
optimization-based methods, graph-based methods, or reac-
tive planners. Mixed-integer quadratic programs (MIQPs)
can plan for a team of different quadrotors, taking their
different sizes and aerodynamic effects between quadro-
tors into account [5]. This method has been applied to
up to four physical quadrotors (three different sizes) and
produces optimal trajectories, but does not scale well to
a large number of robots and/or obstacles. Similar to our
approach, inter-robot constraints are modelled asymmetri-
cally, allowing large quadrotors to fly underneath smaller
ones. Optimization-based methods can also be combined



with sequential planning to achieve better scalability [6];
this method, unlike our work, does not consider asymmetric
interactions between differently sized robots and has not been
demonstrated in 3D.

Graph-based planning can be combined with controller-
based motion primitives to include complex dynamics during
planning. Planning in the joint space of all robots can be
used to model heterogeneous teams such as a collaboration
between a UGV and a UAV [7], but it does not scale well
to a large number of robots. Other approaches use graph-
based planning for homogeneous robots that have different
operating modes, such as flying cars [8]. Here, the motion
planner can consider switching between driving and flying,
but the resulting trajectories are not smooth and asymmetric
inter-robot constraints are not considered.

Velocity obstacle approaches have also been applied to
heterogeneous robot teams [9], but while such local planners
can find solutions quickly, they may not find solutions in
cluttered environments.

III. APPROACH

The first step is to specify the types of robots in the
heterogeneous team and the geometric interaction models
that are required to define collision-free trajectories. We
then outline the major components of our approach and
explain the major extensions to the previous work that enable
heterogeneous teams.

A team of robots is considered heterogeneous if it consists
of multiple robots with different physical capabilities or
dynamic limits. We focus our efforts on two classes of
robots, quadrotors and differential drive wheeled robots,
however, the presented method applies for any differentially
flat system. Each of these classes can be further delineated
into types which may be of different sizes or have varied
dynamic limits, such as maximum accelerations or velocities.

Quadrotors generate a fast-moving volume of air called
downwash that impacts the ability of other quadrotors to fly
directly below them. In the prior work this was addressed
by modeling the collision volume of a quadrotor as an axis-
aligned ellipsoid centered at the quadrotor’s position [1].
This is not sufficient in the heterogeneous case, as the effect
is asymmetric with respect to the sizes of the interacting
quadrotors. For example, a large quadrotor is likely able to
fly below a smaller one without difficulty, but the opposite
is not true. Additionally, wheeled robots likely do not need
to consider the downwash effect at all. Thus, we define
independent collision volumes for every possible pair of
interacting robot types.

A. Collision Model

Consider a team of N robots, where each robot is one of
M types. The environment is defined as a set of convex
obstacles O1 . . .ONobs

within a boundary defined by a
convex polytope W . For each robot of type k ∈ {1 . . .M}
we define a convex volume Rk

E(q) that represents the robot-
environment collision volume for the k type robot at position
q ∈ R3. The set Fk describes the free configuration space

Fig. 2. An illustration of the cylindrical collision geometries for a large
quadrotor of type k at position q and a small quadrotor of type l at
position p. In this case the tuple R

(k,l)
R (q) : 〈r, a, b〉 has b > a to model

the asymmetry between the downwash zones as shown on the left side.
R

(l,k)
R (p) is symmetric to R

(k,l)
R (q) as shown on the right side.

for a robot of type k with respect to the environment. Fk is
defined:

Fk = (W\(
Nobs⋃
h=1

Oh)) �Rk
E(0), (1)

where � denotes the Minkowski difference.
We define separate convex geometries to describe the

unique collision constraints that exist between every robot
type-pair. Consider a robot r(i,k) with index i ∈ {1 . . . N}
and type k ∈ {1 . . .M} at position q and another robot
r(j,l) at position p. If r(i,k) is at position q, then r(j,l)

cannot occupy the convex volume R(k,l)
R (q). Likewise, if

r(j,l) is at position p, then r(i,k) cannot occupy the convex
volume R(l,k)

R (p). Specifically, we say there is a collision
between the two robots if p ∈ R(k,l)

R (q), or equivalently,
q ∈ R(l,k)

R (p).
If k and l both specify types of quadrotors, then R(k,l)

R (q)
defines both the downwash and physical collision volume of
the k type quadrotor with respect to l type. If either k or l
specify a type of wheeled robot, then R(k,l)

R (q) only specifies
the physical collision volume.

For all cases of (k, l) type pairs, we parameterize the
collision volumes with a tuple R

(k,l)
R (q) : 〈r, a, b〉 that

specifies an axis-aligned cylinder of radius r where the top of
the cylinder is located at qz +a and the bottom at qz−b. The
parameter r represents the minimum safe horizontal distance
between the positions of the two robot types. The parameters
a and b specify the minimum safe vertical distance for the l
type robot above and below q, respectively. These parameters
are experimentally determined for real robots as described in
Section VI.

Note that the definition of the cylinder for the (k, l)
pair is symmetric with respect to the (l, k) pair. That is,
if R(k,l)

R (q) : 〈r, a, b〉, then R
(l,k)
R (p) : 〈r, b, a〉. Figure 2

shows an example of these cylinder definitions for the case
of a large and small quadrotor. Also note that the cylinder
model is an approximation of the downwash effect as it
does not directly account for orientation or acceleration. To
account for inaccuracies, we assume cylinder parameters are
conservative.

Let f (i,k) : [0, T ] 7→ R3 be the trajectory of robot r(i,k)

where T represents the time that the last robot in the team



reaches its goal. Trajectories are considered collision free if
there are no robot-environment collisions and no inter-robot
collisions:

f (i,k)(t) ∈ Fk ∀i, 0 ≤ t ≤ T
f (i,k)(t) /∈ R(l,k)

R (f (j,l)(t)) ∀i 6= j, 0 ≤ t ≤ T.
(2)

B. Problem Statement

Given the following:
• an environment specified by W and O1 . . .ONobs

;
• a set of N robots r(i,k), i ∈ {1 . . . N} and k ∈
{1 . . .M};

• start locations s(i,k) and goal locations g(i,k) for each
robot;

• the robot-environment collision model Rk
E(·) for each

robot type k and the inter-robot collision model R(k,l)
R (·)

for each robot type-pair (k, l); and
• the maximum velocity vkmax and acceleration limits
akmax for each robot type k;

our goal is to compute T and a kinodynamically feasible
trajectory f (i,k) that is collision-free according to (2) for
each robot r(i,k) such that f (i,k)(0) = s(i,k) and f (i,k)(T ) =
g(i,k). This trajectory planning problem is often referred to
as the labeled case, because each robot has its goal assigned
a priori. We also consider the k-color case, where robots of
the same type are interchangeable and allowed to swap goal
assignments.

C. Overview of Approach

As described previously, the high level components of
the presented method share the same structure as the prior
work [1]. To extend the work to the heterogeneous case,
several modifications to the discrete scheduling and trajectory
optimization stages are necessary. In particular, the roadmap
generation and conflict annotation phases are extended to
account for the different free space definitions and velocity
limits of each type of robot. Additionally, the construction
of safe corridors in the trajectory optimization stage is
generalized to account for the different collision volumes
for each robot and robot type-pair. The following sections
detail these modifications.

IV. ROADMAP GENERATION, CONFLICT ANNOTATION,
DISCRETE PLANNING

The first phase of our hybrid planning method is to gen-
erate collision free discrete schedules for every robot in the
team. A discrete schedule assigns each robot a line segment
to traverse for a specific timestep; the segment might consist
of a single point if the robot should be stationary during
that timestep. The discrete schedule guarantees collision-free
execution if the robots move along their segments. Each
robot can traverse its segment using any velocity profile
during the timestep, e.g., a differential-drive robot might turn
in place before moving.

For homogeneous robot teams, a discrete schedule can be
computed by first generating a roadmap and then solving
a multi-agent path-finding problem on that roadmap. When

applying this approach to motion planning for heterogeneous
teams, three problems arise. First, the free space definition
for each type of robot is different because of varying physical
extent or different methods of locomotion. Second, the inter-
robot conflicts are specific to the types of robots that are
interacting, e.g., a small quadrotor cannot fly closely below
a large quadrotor but it is able to fly closely to static obsta-
cles or ground robots. Third, each robot type has different
dynamic limits such as maximum velocities.

We address all three problems by constructing a super
roadmap, which is the disjoint union of the roadmaps for
the individual robot types. We show that the super roadmap
can be used as a drop-in replacement for a regular roadmap
as input to existing planning algorithms.

A. Super Roadmap Generation

A roadmap for robot type k ∈ {1 . . .M} is an undirected
connected graph of the environment Gk = (Vk, Ek), where
each vertex v ∈ Vk corresponds to a location in Fk and each
edge (u, v) ∈ Ek denotes that there is a linear path in Fk

connecting u and v.
We generate the roadmap Gk given a representation of

the environment and the shape of Rk
E(·) using the SPARS

algorithm [10]. SPARS generates dense and sparse roadmaps
such that the sparse roadmap is a subgraph of the dense
one, while keeping any-pair shortest distances within a
user-specified sub-optimality factor. Another parameter, ∆k,
controls the visibility radius and roughly corresponds to the
average edge length of the generated sparse roadmap. We
choose ∆k to be smaller for slower robots, reflecting that
they can travel shorter distances compared to faster ones in
the same amount of time. Specifically, we generate Gk using:

∆k = αvkmax, ∀k ∈ {1 . . .M}, (3)

where α corresponds to the sparsity of all roadmaps.
After executing SPARS, we add additional vertices that

correspond to s(i,k) and g(i,k) to Vk for all i ∈ {1 . . . N}.
We connect those vertices to neighboring vertices by adding
additional edges to Ek.

Consider an example with two small and two large quadro-
tors in an environment with an obstacle (see Fig. 3(a)),
where each quadrotor has to move to the opposite side of
the obstacle. The physical extent of the large UAVs forces
them to fly over the obstacle (see roadmap in Fig. 3(b)),
while the small UAVs can fly over or in front of the obstacle
(see roadmap in Fig. 3(c)). In this example we also assume
that the large UAVs can fly twice as fast as the small ones
and select the ∆k values accordingly. The resulting roadmap
for the large UAV has fewer edges that are longer on average
(166 edges with average length of 0.47 m) compared to the
roadmap for the small UAVs (1712 edges with average length
of 0.28 m).

For ground robots, we limit the roadmap generation to two
dimensions. We can combine the separate roadmaps into a
super roadmap G = (V, E) by computing the disjoint union
or graph sum:



(a) Initial configuration. (b) Roadmap for large/fast
UAVs.

(c) Roadmap for small/slow
UAVs.

(d) Discrete trajectories. (e) Continuous trajectories.

Fig. 3. Example with two small and two large UAVs, one of each type on each side of the obstacle. The UAVs are tasked with moving to goal locations
on the opposite side of the obstacle.

G = (V, E) =

(
M⋃
k=1

Vk,

M⋃
k=1

Ek
)
. (4)

Each vertex v ∈ V is associated with a position q ∈ R3

and we denote this relationship by q = loc(v). The vertex
set V is surjective to R3, i.e., a point in Euclidean space
might correspond with multiple vertices (up to one for each
robot type). Each vertex v ∈ V and edge e ∈ E have their
respective robot type k associated and we refer to it by k =
type(v) and, with a slight abuse of notation, k = type(e).

B. Conflict Annotation

The super roadmap G can be directly used for path
planning for a single robot to avoid robot-obstacle colli-
sions. When using multiple robots of either the same or
different types, inter-robot constraints must be considered.
An offline pre-processing step annotates the roadmap with
potential inter-robot conflicts, by adding the following types
of constraints:
Vertex-Vertex Constraints Two robots may not concur-

rently occupy two vertices which are in close proximity
to each other. We can compute the collision set for each
vertex v ∈ V by checking if a point is in the respective
collision cylinder:

conV V (v) = {u ∈ V|
loc(u) ∈ R(type(v),type(u))

R (loc(v))}.
(5)

Edge-Vertex Constraints One robot may not traverse an
edge if a collision could occur with another stationary
robot. A robot may become stationary during discrete
planning if it is determined that to avoid collisions, it
should wait at its current vertex rather than traverse an
edge. Let R̂(k,l)

R (e) be the convex hull that is created
when R(k,l)

R (·) is swept along edge e. We can compute
the collision set for edge e by checking if the location
associated with a vertex lies within that convex hull:

conEV (e) = {v ∈ V|
loc(v) ∈ R̂(type(e),type(v))

R (e)}.
(6)

Edge-Edge Constraints Two robots may not concurrently
traverse two edges if a collision could occur during the
traversal. Let d̂ be the set of points comprising edge d.
We can compute the collision set for each edge e by

checking for intersection between the convex hull and
the line segment that is defined by edge d:

conEE(e) = {d ∈ E | d̂ ⊂ R̂(type(e),type(d))
R (e)}. (7)

C. Discrete planning

The discrete path planning problem can now be formulated
as an instance of Multi-Agent Path-Finding with General-
ized Conflicts (MAPF/C) [1]. The inputs are the annotated
roadmap and start and goal vertices for the individual robots.
The output is a discrete trajectory for each robot such that all
constraints are obeyed. A discrete trajectory p(i,k) for each
robot r(i,k) is composed of a sequence of K + 1 locations:

p(i,k) = x
(i,k)
0 ,x

(i,k)
1 , . . . ,x

(i,k)
K , (8)

where robots are synchronized in time and have to arrive
at location x

(i,k)
n at timestep n. We define `

(i,k)
n as the

line segment between locations x
(i,k)
n and x

(i,k)
n+1 . Example

discrete trajectories are shown in Fig. 3(d). Each edge is
color-coded by the timestep n in which it will be traversed:
blue at n = 0, gradually changing to red at n = K. The
small UAV in the back flies on top of a large one (which is
safe according to our collision model), while the small one
in front has to keep a large vertical safety distance in order
to pass below the other large UAV.

A robot is restricted to move on the roadmap for its own
type by construction of the super roadmap using the disjoint
union of the per-type roadmaps. As our solver, we use a
variant of Enhanced Conflict-Based Search (ECBS) [11] that
takes the generalized conflicts into account.

In the k-color case, robots of the same type may swap
their goals. The super roadmap allows us to use existing task
assignment algorithms, because there is no path between any
vertices that belong to different robot types. For example,
minimizing the maximum duration over all robots can be
achieved by running the Threshold algorithm [12] prior to
the ECBS execution.

V. TRAJECTORY OPTIMIZATION

Trajectory optimization is done using the same general
process as the prior work for homogeneous teams [1]. First,
collision-free corridors are generated from the discrete sched-
ule for each robot for the entire duration of the plan. Second,
independent trajectory optimizations occur for each robot
within its corridor. Third, continuous refinement of the initial



trajectories is done by sampling the trajectories, recomputing
the safe corridors, and re-optimizing the trajectories inside
the new corridors. Finally, the trajectories are post-processed
by uniformly scaling their duration in order to ensure the
dynamic limits of all robots are obeyed. While the top-
level process is similar, modifications to the construction
of the corridors and the method for trajectory scaling are
necessary to extend the process to heterogeneous teams. We
start by introducing the definitions needed to describe these
modifications.

A. Definitions

We assign a time tn = n∆t to every step in the schedule
determined by the discrete solver. Each of the K steps from
the discrete solution specifies a time interval [tn−1, tn]. The
parameter ∆t is user defined and specifies an initial guess
for the duration of the entire trajectory T = K∆t. Let F (i,k)

n

be the set of points defined by the trajectory of a robot r(i,k)

during timestep n:

F (i,k)
n =

{
f (i,k)(t) | tn ≤ t ≤ tn+1

}
. (9)

During both the initial trajectory optimization and con-
tinuous refinement stages, collision-free safe corridors are
computed. The safe corridor for robot r(i,k) is defined as a
sequence of convex polyhedra P(i,k)

n , n ∈ {1 . . .K}, such
that if every robot travels in their respective P(·,·)

n during
timestep n they are guaranteed to be collision free for that
timestep. The polyhedra P(i,k)

n for a robot r(i,k) are specified
as the intersection of N − 1 half-spaces that separate r(i,k)

from all other robots and Nobs half-spaces separating r(i,k)

from all obstacles.
Let R̂(l,k)

R (F (j,l)
n ) be the set of points defined by sweeping

the cylinder specified by R(l,k)
R along F (j,l)

n . Also let the
half-space separating r(i,k) from r(j,l) be denoted as H(i,j)

Rn .
H(i,j)
Rn is defined such that

H(i,j)
Rn ∩ F

(i,k)
n = F (i,k)

n (10)

H(i,j)
Rn ∩ R̂

(l,k)
R (F (j,l)

n ) = ∅. (11)

Let H(i,h)
En be a half-space separating r(i,k) from an

obstacle Oh at step n. H(i,h)
En is defined such that

H(i,h)
En ∩ F (i,k)

n = F (i,k)
n (12)

H(i,h)
En ∩

(
Oh ⊕Rk

E(0)
)

= ∅. (13)

where ⊕ denotes the Minkowski sum.
With the above definitions P(i,k)

n is specified as

P(i,k)
n =

 N⋂
j 6=i

H(i,j)
Rn

⋂(
Nobs⋂
h

H(i,h)
En

)
. (14)

Fig. 4. An example of the the half-space computation for a robot r(i,k).
The trajectory of r(i,k) is displayed in red on the right side, and another
robot r(j,l)’s trajectory is in green. The swept hull approximation for
R̂(l,k)

R (F(j,l)
n ) is shown in blue. The separating hyper-plane is in purple

with the arrows indicating the direction of the half-space

B. Safe Corridors

In the prior homogeneous planning work, the half-spaces
defining the safe corridors were computed using a modified
SVM in a stretched coordinate system to account for the
uniform ellipsoidal collision models. In the heterogeneous
case this method can no longer be used because of the
non-uniform volumes that each robot occupies. Instead, we
directly enumerate a vertex cloud specifying the time swept
hull of the cylinders defined in Section III-A, then compute
the half-spaces using a standard SVM.

Consider robots r(i,k), r(j,l), and a corresponding half-
space H(i,j)

Rn . H(i,j)
Rn is computed by first specifying two

vertex sets V(i,k)
n and V(j,l)

n for each robot and then sep-
arating those vertex sets with a linear SVM. The set V(i,k)

n

is composed of the trajectory points sampled from F (i,k)
n ,

and the set V(j,l)
n is constructed by generating a conservative

approximation of the swept hull specified by R̂(l,k)
R (F (j,l)

n ).
To generate the swept hull vertices for V(j,l)

n we first
compute a polytope approximation of the cylinder specified
by R

(l,k)
R by computing the vertices of a circumscribed

polygon with radius r and placing those vertices on both the
top and bottom ends of the cylinder. V(j,l)

n is then constructed
by enumerating these cylinder approximations at points
sampled from F (j,l)

n . In the first step of optimization, the
points sampled from F (i,k)

n and F (j,l)
n are the endpoints of

`
(i,k)
n and `(j,l)n from the discrete solution. During continuous

refinement the samples from F (·,·)
n are uniform evaluations

of f (·,·)n (t) over the corresponding interval.
Finally, H(i,j)

Rn is computed by a linear SVM such that
F (i,k)

n lies entirely on the positive side of the separating
hyper-plane and R̂(l,k)

R (F (j,l)
n ) lies entirely on the negative

side. This processes is repeated for every robot pair at
every timestep to specify the components of the corridor



TABLE I
ROBOT PROPERTIES.

Robot Radius Height Weight vmax amax

[m] [m] [kg] [m/s] [m/s2]
Small 0.08 0.06 0.033 1.7 6.2

Medium 0.14 0.12 0.124 2.0 8.5
Large 0.21 0.15 0.491 1.8 7.2

Ground 0.25 0.45 6.3 0.5 0.5

TABLE II
ROBOT INTERACTIONS. MINIMAL REQUIRED HORIZONTAL (r) AND

VERTICAL DISTANCES (v) IN METERS DENOTED AS 〈r, v〉.

bottom
top Small Medium Large Ground

Small 〈0.2, 0.6〉 〈0.3, 1.4〉 〈0.35, 2.0〉 〈0.33, 0.26〉
Medium 〈0.3, 0.1〉 〈0.3, 0.5〉 〈0.4, 0.3〉 〈0.39, 0.29〉
Large 〈0.35, 0.2〉 〈0.4, 0.2〉 N.A. 〈0.46, 0.3〉
Ground 〈0.33, 0.26〉 〈0.39, 0.29〉 〈0.46, 0.3〉 〈0.5, 0.45〉

that partition the free space for every robot with respect to
the rest of the team. Construction of half-spaces separating
the robots from the environment follows the same procedure
described in the prior work with the addition that every robot
can have a separate specified size [1]. A visualization of an
approximated swept cylinder hull and a separating hyper-
plane defining a half-space are given in Fig. 4.

C. Optimization

Trajectory optimization is identical to the prior homoge-
neous planning work [1], where we construct independent
quadratic programs for each robot. In the following we
outline this method. For each robot, we formulate a quadratic
program with an optimization objective that minimizes the
sum of integrated squared derivatives of the trajectories.
The decision variables for the optimization are the control
points of K sequential Beziér curves. We specify linear
inequality constraints to bound the control points within the
safe corridors and equality constraints to enforce starting
and goal positions as well as continuity between each of
the Beziér curves. The optimization can be repeated using
the previous results as input for iterative cost improvement.

D. Dynamic Limits

Many nonholonomic mobile robots are differentially flat in
position outputs, including quadrotors and differential drive
robots [13], [14]. That means the control input to move the
robots along a trajectory can be computed using the trajectory
itself. Polynomial trajectories can be scaled in time; a longer
trajectory has lower velocities and accelerations. Therefore,
dynamic limits can be enforced by scaling all trajectories by
a constant factor. We compute a trajectory stretching factor
for each robot using a binary search approach. The maximum
of all those factors is then applied uniformly to all trajectories
and guarantees that the dynamic limits are fulfilled.

An example of the generated continuous trajectories is
shown in Fig. 3(e); the trajectories are color-coded by time
(blue means t = 0 and red means t = T ). The small
quadrotor in the back flies directly above the large one.

Fig. 5. Runtime of roadmap annotation for different numbers of robot
types.

VI. EXPERIMENTS

For the discrete planning we implement roadmap genera-
tion and annotation in C++ using the SPARS implementation
from the OMPL library [15] and an OctoMap [16] data
structure. The half-space computation is implemented in
Matlab using libSVM [17]. The remaining code (ECBS
solver, trajectory optimization) is only slightly modified
compared to our previous homogeneous planning work [1].
All simulations were executed on a PC running Ubuntu
16.04, with a Xeon E5-2630 2.2 GHz CPU and 32 GB RAM.

A. Robot Characterization

We use four different types of robots in our experiments.
The small robots are Bitcraze Crazyflie 2.0 nano-quadrotors,
an open-hardware, open-source, and commercially available
platform. Crazyflie 2.0 can fly standalone or, with an exten-
sion board, be used as a flight controller. We use off-the-
shelf components for frame, motor, and power distribution
to build two larger kinds of quadrotors (medium and large).
We extend the Crazyswarm [18], an open-source solution
to use many Crazyflie 2.0 quadrotors simultaneously, by
adding support for heterogeneous quadrotor teams. Each
of the quadrotors uses the same extended custom firmware
that runs a non-linear trajectory tracking controller, extended
Kalman filter for state estimation, and trajectory evaluation
on-board at 500 Hz. As ground robot we use the Turtlebot2
platform equipped with a single-board embedded computer
running Ubuntu 16.04 and ROS Kinetic. We implement
a trajectory-tracking controller that runs on-board [19] at
50 Hz. A summary of the robot properties is given in Table I.

All experiments are conducted indoors using a motion cap-
ture system to provide state estimates to the robots. All robots
fuse their external state estimate at approximately 100 Hz
using an on-board EKF, but otherwise only receive high-
level commands such as “start trajectory execution”. The
execution is distributed and clocks are initially synchronized
using low-latency wireless broadcasts.

We use a figure-8 trajectory that can be stretched in time
to empirically determine physically safe maximum velocity
and acceleration limits for each robot platform. In each case,
we stop if the Euclidean position error worsens significantly.
All UAVs have similar dynamic limits of vmax ≈ 1.8 m/s,
reaching roll/pitch angles of around 30◦. The ground robot
is significantly slower with vmax = 0.5 m/s, see Table I for
details.



Fig. 6. Trajectories and small/medium collision-model for our physical experiment. The robot types are color-coded (red: small, blue: medium, purple:
large, green: ground). The red cylinders denote R(small,medium)

R (·) at a time during a simulated execution. There is no medium/small collision, because
the blue spheres marking the position of the medium quadrotors are outside of all red cylinders.

For pairwise interaction, we find that two quadrotors
hovering next to and on top of each other are worst-
case scenarios and conducted experiments with all robot
pairs except large/large, see Table II. For example, if the
small UAV hovers on top of a medium UAV a vertical
safety distance of 0.1 m is required, while in the opposite
ordering the downwash effect necessitates a vertical safety
distance of 1.4 m. This results in a inter-robot collision
model R(small,medium)

R (·) = 〈0.3, 1.4, 0.1〉 or equivalently
R

(medium,small)
R (·) = 〈0.3, 0.1, 1.4〉. This asymmetric effect

has been noted in previous work [5], but does not occur
with all UAV types. For example, the interaction between
our medium and large quadrotors is nearly symmetric with
0.3 m and 0.4 m required vertical safety distances.

B. Scalability

We analyze the scalability of our approach in two exper-
iments; first with respect to the number of robot types M
and second with respect to the maximum ratio of velocity
limits. We use N = 50 robots in a 28 m× 12 m× 12 m
environment with obstacles where 25 robots start on each
side and are tasked with swapping sides. We use an asym-
metric collision model similar to the one we observed on real
quadrotors, i.e. smaller UAVs can fly above bigger ones, but
require a large vertical safety distance to fly below bigger
ones (ranging from 0.02 m to 1.8 m). We use up to ten
different types, where the smallest one has radius 0.02 m and
height 0.01 m and the biggest has radius 0.2 m and height
0.1 m.

In the first experiment, all robots have the same ve-
locity limits. We vary the number of robot types M ∈
{2, 4, 6, 8, 10} and attempt to keep the difficulty of the
problem similar by always using the full range of robot types,
e.g., in case of M = 2, we use 25 robots of the smallest size
and 25 robots of the largest size distributed equally. We find
that the roadmap annotation step varies roughly quadratically

with M (see Fig. 5), while the other steps stay mostly
constant (ECBS: 2 s, two iterations of optimization: 60 s).
Each of the roadmaps belonging to a single robot type has
about 800 vertices and 2500 edges, because the desired ∆k

is constant. Thus, the super roadmap contains approximately
a factor of M more vertices and edges compared to a single
roadmap. The annotation step requires checking every pair
of entities in the roadmap, resulting in a quadratic runtime
in M . However, this computation is a preprocessing step
– robots can be assigned new start/goal locations without
the need to re-run the roadmap annotation. The planning
time itself only depends on the number of robots and the
“hardness” of the problem. Here, “hardness” refers to the
number of generalized conflicts described in Section IV-B.
The number of conflicts might increase for large collision
cylinders, but this is difficult to quantify.

In the second experiment, we use two robot types (the
largest and smallest) and reduce the maximum velocity limit
of the smallest robot type using factors {1, 2, 3, 4}. Lower
velocities necessitate the generation of more vertices and
edges for that roadmap type, e.g., the roadmap for the case
where the small robot is four times slower has 28 times
more vertices and 7 times more edges compared to the large
robot. As before, this results in a runtime increase during
the roadmap annotation (23 s to 518 s for the two extreme
cases). The resulting plans require more discrete timesteps
because of the smaller robots moving slower, resulting in
longer runtimes for both ECBS (3 s to 7 s) and optimization
(43 s to 460 s).

C. Physical Experiment

We set up an obstacle course in a space of
9 m× 4.5 m× 2 m where robots must swap positions
using ten small, two medium, and one large quadrotors, and
two ground robots. We create an OctoMap representation of
the environment using an RGB-D camera that is tracked by



our VICON motion capture system. The roadmap generation
step takes 30 s to 120 s per roadmap, where each roadmap
has 140 to 330 vertices and 260 to 1300 edges, depending
on robot size, dynamic limits, and roadmap dimensions
(2D or 3D). We merge the individual roadmaps to our
super roadmap and annotate it with potential vertex-vertex,
vertex-edge, and edge-edge conflicts in 4 s, resulting in
820 vertices and 2700 edges. Most conflicts are edge-edge
conflicts with a mean of 77 conflicting edges per edge
due to the large swept volumes created by our inter-robot
collision model. Our discrete planner can compute discrete
trajectories in less then 1 s, and the four iterations of
spatial partitioning and optimization takes about 15 s.
After stretching the trajectories according to our dynamic
limits (2 s), the resulting trajectories are 16 s long. The
trajectories and the small/medium collision model are
shown in Fig. 6. The robots safely execute the generated
trajectories simultaneously, see Fig. 1 for a snapshot and
the supplemental video for the full execution.

VII. CONCLUSION

We present a motion planning method that can compute
safe trajectories for heterogeneous robot teams. Our approach
considers asymmetric inter-robot spatial constraints as well
as the different dynamic limits for each robot type in the
team. Prior alternative methods either do not scale well for
large teams, may get stuck in non-trivial environments, or
have not been shown to work in 3D. In contrast, we have
shown that our method scales well for at least 50 robots
in simulation and have physically demonstrated trajectories
for 15 robots in a 3D obstacle-rich environment. To our
knowledge, our method is the first method that efficiently
solves heterogeneous trajectory planning problems for large
robot teams.

In the future we plan to improve the roadmap generation
for reduced runtime, reduced conflicts during annotation,
and better repeatability. We also plan to investigate methods
for online settings or cases where each robot has to fulfill
multiple goals.

REFERENCES

[1] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Aya-
nian, “Trajectory planning for quadrotor swarms,” IEEE Transactions
on Robotics, Special Issue on Aerial Swarm Robotics, 2018, to appear.

[2] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. R. Sturtevant, G. Wagner, and P. Surynek, “Search-based
optimal solvers for the multi-agent pathfinding problem: Summary and
challenges,” in Symposium on Combinatorial Search (SOCS), 2017,
pp. 29–37.

[3] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012, pp. 1917–1922.

[4] J. A. Preiss, W. Hönig, G. S. Sukhatme, and N. Ayanian, “Downwash-
aware trajectory planning for large quadrotor teams,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 250–257.

[5] D. Mellinger, A. Kushleyev, and V. Kumar, “Mixed-integer quadratic
program trajectory generation for heterogeneous quadrotor teams,” in
IEEE International Conference on Robotics and Automation (ICRA),
2012, pp. 477–483.

[6] D. R. Robinson, R. T. Mar, K. Estabridis, and G. Hewer, “An
efficient algorithm for optimal trajectory generation for heterogeneous
multi-agent systems in non-convex environments,” IEEE Robotics and
Automation Letters, vol. 3, no. 2, pp. 1215–1222, 2018.

[7] J. Butzke, K. Gochev, B. Holden, E. Jung, and M. Likhachev, “Plan-
ning for a ground-air robotic system with collaborative localization,” in
IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 284–291.

[8] B. Araki, J. Strang, S. Pohorecky, C. Qiu, T. Naegeli, and D. Rus,
“Multi-robot path planning for a swarm of robots that can both fly and
drive,” in IEEE International Conference on Robotics and Automation
(ICRA), 2017, pp. 5575–5582.

[9] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. A. Beardsley,
“Collision avoidance for aerial vehicles in multi-agent scenarios,”
Autonomous Robots, vol. 39, no. 1, pp. 101–121, 2015.

[10] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptoti-
cally near-optimal motion planning,” International Journal of Robotics
Research (IJRR), vol. 33, no. 1, pp. 18–47, 2014.

[11] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Symposium on Combinatorial Search (SOCS), 2014, pp.
19–27.

[12] R. E. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[13] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of
non-linear systems: introductory theory and examples,” International
Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[14] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE International Conference on Robotics
and Automation (ICRA), 2011, pp. 2520–2525.

[15] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, 2012, software available at http://ompl.kavrakilab.org.

[16] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: an efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013, software available at http://octomap.github.com.

[17] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.
ntu.edu.tw/∼cjlin/libsvm.

[18] J. A. Preiss*, W. Hönig*, G. S. Sukhatme, and N. Ayanian,
“Crazyswarm: A large nano-quadcopter swarm,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), 2017, pp.
3299–3304, software available at https://github.com/USC-ACTLab/
crazyswarm.

[19] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable
tracking control method for an autonomous mobile robot,” in IEEE
International Conference on Robotics and Automation (ICRA), 1990,
pp. 384–389.

http://ompl.kavrakilab.org
http://octomap.github.com
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://github.com/USC-ACTLab/crazyswarm
https://github.com/USC-ACTLab/crazyswarm

	INTRODUCTION
	RELATED WORK
	APPROACH
	Collision Model
	Problem Statement
	Overview of Approach

	Roadmap Generation, Conflict Annotation, Discrete Planning
	Super Roadmap Generation
	Conflict Annotation
	Discrete planning

	Trajectory Optimization
	Definitions
	Safe Corridors
	Optimization
	Dynamic Limits

	EXPERIMENTS
	Robot Characterization
	Scalability
	Physical Experiment

	CONCLUSION
	References

