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I. INTRODUCTION

Distributed solutions for tasks that require tight coordina-
tion between multiple robots present a significant challenge,
due to the requirements for robots to model their own state,
the states and actions of other robots, and any communication
available. Common approaches for multi-agent coordination
either depend on full observability and deterministic policies,
like Q-learning algorithms [1], or use models that cannot
scale above a few agents [2]. These techniques cannot be
applied in larger groups or scenarios with only partial ob-
servability. They also cannot adapt to unknown or changing
environments, like those that would be encountered in search
and rescue after a natural disaster, where maps may be
inaccurate and communication unreliable.

In this work, we study shape formation, where a group
of agents in a 2-D space must arrange themselves into a
desired shape. Agents can move within the space with limited
velocity and observe other agents nearby, but cannot uniquely
identify or explicitly communicate with them. The shape may
be located anywhere in the space, as only agents’ relative
positions are important for task completion. Previous work
on shape formation has used methods that require agents to
be aware of their positions or use a fixed hierarchy, which
are unrealistic requirements when sensing is limited and the
environment is changing [3].

We introduce a model-free approach for a multi-agent
system to learn distributed policies. The agents use gradient
ascent to jointly reach policies to complete shape formation
efficiently, and these policies and these policies perform
better than Q-learning or model-based methods in known
spaces and in spaces with unknown obstacles. While this
problem provides a working example, the technique is much
more general and can be applied to any cooperative problem
and scaled to any size group.

II. METHODS

We simulate the shape formation task using a grid world,
as shown in Fig. 1, with a set of goal states. Agents occupy
one grid cell and can move to an adjacent empty cell. Each
agent observes only the surrounding 8 grid cells, and cannot
communicate with or identify other agents. The grid world
has a set of goal states, containing states where all agents
form the goal shape. The group is rewarded only when it is
in a goal state. Each agent maintains its own parameterized
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Fig. 1. Example of 8 agents forming a square in the discrete grid world,
with examples of some agents’ states on the right.

stochastic policy, and uses gradient ascent to find parameters
for a policy with maximum expected reward.

Estimating the gradient at a parameter value is done by
running a simulation; each agent iteratively computes its own
gradient as it moves around the grid world [4]. A conjugate
gradient algorithm with line search is used to find parameters
where the gradient is approximately zero [5]. The best choice
of parameters for one agent depends on all other agents’
policies, thus each agent cannot find an optimal policy alone.
Instead, we iterate through the set of agents, and each agent
completes one step of conjugate gradient ascent until all
agents reach parameters with gradients near zero.

III. EXPERIMENTAL RESULTS

A. Simulations

We performed a series of experiments in the simulation.
Groups of 2 to 8 agents trained to reach a set of goal states,
then the groups’ performance was evaluated. All groups
reached policies significantly better than random exploration.

All groups learned to converge in a corner of the grid. In
doing this, the agents implicitly agree on a meeting point,
which is much more efficient than searching the space to find
each other. Each group’s choice of corner is random, due
to random behavior during the group’s initial exploration.
Within a group, each agent learns a similar policy and takes
all positions in the goal shape with equal probability. Groups
had good performance even for goal shapes where each agent
could not see the whole shape within its local view, such as 4
agents forming a line, indicating that the learned coordination
is implicit and does not depend on the exact number of agents
present. Fig. 2 shows the behavior of all agents during one
evaluation of shape formation.

Larger groups required longer training times to reach
similar results; however, the training time scales only linearly
with the number of agents.

B. Comparison to Hysteretic Q-Learners

We compared our approach to Hysteretic Q-Learning
(HQL), a model-free Q-learning method in which each agent
learns a Q-value function describing the expected reward for
each observation-action pair. HQL typically works well for
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Fig. 2. A policy learned by 4 agents to form a square, beginning with
random initialization in the top left and continuing from left to right. At
each step, agents take the actions indicated in order. All agents have learned
to move toward the lower left corner first, then form the final shape.
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Comparison of groups trained with each method

Fig. 3. For each algorithm, 5 different groups were trained and evaluated
on 100 random initializations. This plot shows the performance of these
groups, with each column showing the results from one group. Though
HQL groups have median performance similar to gradient ascent groups,
their worst-case performance tends to be much worse.

multiagent learning because it allows agents to adapt quickly
to other agents learning better policies, but react slowly to
other agents’ exploratory behavior. The agents move around
the grid world together and each compute their own Q-
values, then follow an ε-greedy policy.

We evaluated groups of 4 agent forming squares trained
with policy gradients and with HQL. In general, HQL pro-
duced a policy with similar median performance to gradient
ascent agents, but with much more variance in individual
evaluations of the same policy and in the quality of learned
policies between different groups, as shown in Fig. 3.

We are interested in policies that not only complete
shape formation well, but that can adapt to changes in the
environment. We created test environments with obstacles, as
shown in Fig. 4, and used them to evaluate groups of agents
that had trained with no obstacles.

The two approaches performed similarly for most obsta-
cles, but hysteretic Q-learners performed extremely poorly
in spaces with an obstacle intersecting the wall they tended
to converge on. Two of the groups of hysteretic Q-learners
averaged over 100,000 steps to reach a goal state in this
environment, with one taking over 500,000. In contrast, the
obstacle that interfered most with the gradient ascent agents’
policies was a block one grid square away from the corner
where the group converged. However, all gradient ascent
groups successfully completed the shape formation in about
13,000 steps, which is comparable to the 9,290 steps they

(a) (b) (c) (d) (e)
Fig. 4. Environments with obstacles, and common goal states that groups
found. (a) Block in corner. (b) Block near corner. (c) Block in center. (d)
Vertical wall. (e) Horizontal wall.

took before learning any policy. While this is not optimal, it
demonstrates that gradient ascent agents are able to overcome
foreign obstacles more consistently than the HQL agents.

C. Comparison to Model-Based Methods
A common alternative to our model-free approach would

have agents use an explicit model of the world and possible
joint actions and state transitions to select the action with the
highest expected reward [2]. With this method, exact solu-
tions require large policy trees; while approximate solutions
can be found by sampling the policy space, these solutions
may be far from optimal. We used the MultiAgent Decision
Process (MADP) toolbox [6] to compare the two methods.
For two agents in a 3 × 3 grid, which requires a policy
with only two steps, the MADP toolbox produced some
approximate solutions, but no exact ones. For two agents
in a 5 × 5 grid, which is the smallest problem evaluated
with policy gradients, gradient ascent reached a good policy
in about an hour, but none of the exact or approximate
algorithms in the MADP toolbox could reach a solution.

IV. CONCLUSION AND FUTURE WORK
We have developed a method for learning policies for

coordination in a group of agents and introduced shape for-
mation, a multi-agent problem requiring tight coordination,
to demonstrate its performance. We showed that policies
learned using this method perform better with new obstacles
in the environment than those learned using HQL, another
model-free approach, and that they performed significantly
better than model-based methods.

In the future, we would like to explore using the policy
gradient approach on larger groups. Furthermore, we plan to
work toward quantifying the requirements for our policies,
which will be necessary to understand how those policies
can be used in real applications.
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